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GENERAL CHARACTERISTICS OF THE WORK
Rationale of the work and degree of development. The work was devoted to the study of convergence of spectral expansions in eigen and associated functions of an even order ordinary differential operator.

The study of asymptotics of eigenvalues and convergence of spectral expansions for various classes of boundary value problems starts with classic works of J. Liouville, Sh. Sturm, and later with the works of V.A. Steklov, Ya.D. Tamarkin, D. Birkhhoff, M.L.Rasulov and other authors. 
When constructing spectral theory of differential operators, basicity of the system of root functions of the studied differential operator in this or other space; absolute and uniform convergence of spectral expansion of the function from the class, generally speaking, not coinciding with domain of definition of a differential operator; equiconvergence of spectral expansion of an arbitrary function from this or another class by the system of root functions of the studied differential operator with expansion of the same function in trigonometric Fourier function and so on, play an important role.
During a long time, the main objects of study were spectral properties of self-adjoint differential operators. However, since the first half of the XX century a number of new problems of mathematical physics reducing to study of spectral properties of not self-adjoint differential operators have arisen. The Bitsadze-Samarsky problem with nonlocal boundary value problems for heat equations may serve as such an example.

When studying not self-adjoint problems it was noticed that the system of eigen-functions of such operators, generally speaking not only does not form a basis in the class 
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 but also is not complete in 
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 Therefore, such systems should be supplemented with associated functions. In these problems, eigen and associated functions (root functions), generally speaking, are not orthogonal in
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 neither their closeness, not their minimality imply basicity in this space. Thus, the study of not self-adjoint problems required new approaches
The fact of completeness in 
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 of a specially constructed system of root functions for a wide class of boundary value problems was established by M.V. Keldysh. The study of completeness for a wide class of boundary value problems was further continued by a number of mathematicians.


A class of intensely regular boundary value problems providing the Riesz basicity of the system of root functions in 
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was managed to highlight in the works of V.P. Mikhailov and G.M. Kesselman. Block-basicity (or basicity with braces) of the system of root functions of boundary value problems was estblished by A.A.Shkalikov.
The first greatest results of uniform equiconvergence for ordinary differential operators with regular boundary conditions and sufficient smooth coefficients were obtained by Ya.D. Tamarkin. Much later, M. Stone obtained a similar result for an operator with summable coefficients. A.P. Khromov extended the Tamarkin equi-convergence theorem on integral operators whose kernels generalize the properties of the Green function of a differential operator with regular boundary conditions. 
The above works were based on the resolvent method and the equiconvergence obtained in these works are block-equiconver-gences (equiconverggences with braces).

One of the methods for studying differential operators is a method developed by V.A. Il’in. He detected that in the presence of infinitely many associated functions the basicity and equiconvergence properties, unlike the completeness properties, substantially depend on the choice of root functions, and also are not determined only by concrete form of boundary conditions. The values of the coefficients of the differential operator also affect on these properties and these properties change at arbitrary number of change of the values of coefficients in the metrics of the classes in which these coefficients were given. Therefore, in this situation the basicity and equiconvergence conditions can not be formulated in the terms of boundary conditions.

In this connection, V.A. Il’in suggested a new interpretation of root functions that are understood as regular solutions of the appropriate equation with a spectral parameter irrespective of the kind of boundary conditions. They allow to consider arbitrary boundary conditions (both local and nonlocal), the system of functions not related to any boundary conditions and also some systems obtained by combination of the subsets of root functions of two different boundary value problems.

In his papers, V.A. Il’in considered a system of root functions of an ordinary differential operator and under certain natural conditions established theorems on uniform equiconvergence and basicity on a compact. Further study of these or other issues of spectral theory of differential operators were developed in the papers of V.A. Il’in and his followers V.V. Tikhomirov, Sh.A.Alimov, I. Io, I.S. Lomov, V.I. Kamornik, N.B. Kerimov, V.D. Budayev,  N. Lazhetich, V.M. Kurbanov, L.V. Kritskovai and others. 
Recent years, dependence of convergence and equiconver-gence rate on different characteristics is intensily studied and important results were obtained in the papers of V.M. Kurbanov and A.T. Garayeva, V.M. Kurbanov and R.A. Safarova, I.S. Komovai, A.S. Markov. Differential operators of second and third orders were thoroughly studied in the papers of V.M. Kurbanov and A.T. Garayeva, I.S. Lomov, A.T. Garayeva, A.T. Garayeva and E.B. Akhundova. 
Further study of these or other issues for higher order differential equations by the V.A. Il’in method is of interest.

Goal and task of the study. To study absolute and uniform convergence and rates of uniform equiconvergence on a compact on spectral expansions in root functions of an even order ordinary differential equation.


Investigation methods. The methods of spectral theory of differential operators, theory of functional analysis, theory of harmonic analysis are used in the work.

The basic statements to be defended.
· The results of studies on absolute convergence, rate of uniform convergence of orthogonal expansion in eigen functions of an arbitrary even order ordinary differential operator with summable coeficients.

· The results of investigations on absolute and uniform convergence of biorthogonal expansions of functions from the class 
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 in root functions of an even order differential operator with smooth coefficients.

· The results of researches of influence of an integral modulus of continuity of a coefficient for (2m-2)-th derivative on uniform equiconvergence rate of biorthogonal expansion with ordinary trigonometric Fourier series.

· The results of investigations of uniform equiconvergence rate on a compact for functions from Sobolev-Nikolsky-Besov functional spaces.

Scientific novelty. The following results were obtained:

· Absolute and uniform convergence of spectral expansion of a function from 
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, in eigen-functions of 2m-th order ordinary differential operator was studied, the remainder of this expansion in the metrics 
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· Uniform equiconvergence rate of spectral expansion of a function from the class 

 in eigen-functions of 2m-th order ordinary differential operator with trigonometric Fourier expansion on a compact was found.

· Theorems on absolute and uniform convergence of biorthogonal expansions of functions from the class  
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 in the system of root functions of 2m-th order ordinary differential operator with smooth coefficients were proved, uniform convergence rate was established.

· Theorems on uniform equiconvergence on a compact with trigonometric series of expansions in biorthogonal series in root functions of 2m-th order ordinary differential operator with summable coefficients were proved for an arbitrary function f(x) from the class 
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. Uniform equiconvergence rates for functions from various functional classes (
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Theoretical and practical value. The work is of theoretical character. Its results may be used in spectral theory of differential operators; when justifying the solution of mathematical physics problems by the Fourier method, and in theory of approximation of functions
Approbation of the work and its application. The main results of the dissertation were reported: at the International Conference dedicated to the 55 years of the Institute of Mathematics and Mechanics (Baku, 2014); at the International Conference Azerbaijan-Ukraine MADEA 7 (Baku, 2015); International Workshop on “Non–harmonic Analysis and Differential Operators” (Baku, 2016); at the International Conference dedicated to 55 years of Sumgait State University (Sumgait, 2017); at the International Scientific Conference “Actual Problems of Mathematics and Mechanics” (Baku, 2018);  An International Workshop Dedicated to the 80th anniversary of an academician Mirabbas Geogja oglu Gasymov “Spectral Theory and its Applications” (Baku, 2019); Proceedings of the XIII International Conference timed to 55 years of the faculty of mathematics and computer sciences ( Russia, Mahachkala, 2019.), at the seminar of the chair of “Mathematical Analysis” (head, doct. phys. math. sci. prof. B.A. Aliev) of Azerbaijan State Pedagogical University; at the seminar of the department of “Functional Analysis” (head, doct. phys. math. sci. prof. G.I. Aslanov) of the Institute of Mathematics and Mechanics of ANAS.


Personal contribution of the author. All conclusions and the obtained results belong personally to the author.
Author’s publications. The main results of the dissertation were published in 12 papers whose list is at the end of the author’s thesis.


Name of the institution where the work was done. The work was done at the chair of “Mathematical Analysis”, Azerbaijan State Pedagogical University.

Structure and volume of the dissertation (in signs, indicating the volume of each structural subsection separately). The total volume of the dissertation –2137000 signs (the title page – 320 signs, content 2180  signs, introduction – 54000 signs, chapter I – 110000 signs, chapter II – 46000 signs, conclusion – 1200 signs). The list of references consists of 88 names.
THE CONTENT OF THE DİSSERTATİON

We now briefly state the main results of the dissertation.


           In chapter I we study convergence of spectral expansions of functions from the class 
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 in eigen functions of even order ordinary differential operator with summable coefficients. Sufficient conditions of absolute and uniform convergence are established, uniform equiconvergence rate on 
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of these expansions are estimated.

In this chapter uniform equiconvergence of spectral expansion in eigen functions of a fourth order differential operator with a trigonometric series is also studied. For the function from the class 
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 uniform equiconvergence rate is established on any compact 
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In section 1.1 on the interval 
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with real coefficients 
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Denote by 
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a class of functions absolutely continuous together with its derivatives up to the (2m-1)-th order inclusively on the segment
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 responding to the eigenvalue 
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Let be a complete orthonormed in 
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 system consisting of eigen functions of the operator 
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 we introduce a partial sum of orthogonal expansion of the function 
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The main result of thic section is the following theorem.


Theorem 1. Let the system 
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Then spectral expansion of the function 
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Note that such results for a second order operator were established in the papers of N.B. Lazhetich, V.M. Kurbanov and R.A. Safarov, A.T. Garayeva, for a fourth order operator the given theorem was proved in the paper of Ya.I. Huseynova.

Theorem 1 implies a number of corollaries:

Corollary 1. If in theorem 1 the function 
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Corollary 2. If in theorem 1 the function 
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Corollary 3. If in theorem 1 the function 
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           In section 1.2. we study convergence of spectral expansions of functions from the class 
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 in eigen-functions of an even order ordinary differential operator L with summable coefficients. Sufficient conditions of absolute and uniform convergence were found, uniform convergence rate of these expansions on [image: image77.wmf]G
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In this section we prove the following theorem.
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Then spectral expansion of the function [image: image82.wmf])
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Corollary 5. If in theorem 2 the function [image: image94.wmf]1
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Moreover, const is independent of [image: image97.wmf])
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To prove the above formulated results it is necessary to estimate the Fourier coefficients [image: image100.wmf]k
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Lemma 1. For the Fourier coefficients [image: image106.wmf]k
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Note that in the paper of N.I. Lazhevich, Sturm-Liouville operator 
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The proofs of the above formulated results are based on the following auxiliary lemmas.
Lemma 2. For the Fourier coefficients [image: image158.wmf]k
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Lemma 3. Let the function [image: image163.wmf])
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In the next section the results obtained in sections 1.1.-1.3. are applied to some concrete differential operators.
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Mean value formula for eigen functions  
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In section 2.1. of this chapter we consider an ordinary differential operator
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We study absolute and uniform convergence of biorthogonal expansion of the function  f(x) from the class 
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The following theorem on absolute and uniform convergence of biorthogonal expansion is the main result of this section. 
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Corollary 9. Let conditions А be fulfilled. Then biorthogonal expansion of the function 
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where  const is independent of  f(x), the symbol “o” depends on the function f(x).
In section 2.2 we study uniform equiconvergence of spectral expansion in root functions of even order differential operator with trigonometric expansion on a compact. We identify dependence of uniform equiconvergence rate on modulus of continuity of the coefficient for the 
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Note that in his ppers V.M. Kurbanov established estimations of uniform equiconvergence in the terms of integral module of continuity of expanded functions. 


Dependence of uniform equiconvergence rate on the module of continuity of the potential of Scheordinger’s one-dimensional operator was studied in the papers of V.M. Kurbanov and R.A. Safarov, V.M. Kurbanov and A.T. Garayeva. In this section we extend these results on the case of even order arbitrary differential operator.
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where the constants 
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Theorem 9 implies the following corollaries.

Corollary 10. Under the conditions of theorem 9 the following estimations are valid:
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CONCLUSİON
· Absolute and uniform convergence of spectral expansion of a function from 
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· Uniform equiconvergence rate of spectral expansion of a function from the class 

 in eigen-functions of 2m-th order ordinary differential operator with trigonometric Fourier expansion on a compact was found.

· Theorems on absolute and uniform convergence of biorthogonal expansions of functions from the class  
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