Semi-annual report of “Applied Mathematics” department of IMM
for 2019

The staff of “Applied Mathematis” department consists of 5 employees: 1
prof.,doct.phys.math.sci.,, 1 doctor of mech.sci.sen.res.ass.; 1 cand.techn.sci.;
sen.res.ass.; 2 laboratory assistants .

In 2019 “ Applied Mathematics” department the following researches were
carried out around two topics:

TOPIC 1. Bases of viscous fluid hydrodynamic with reqard to physical media in
nanosistems.

(doct. phys.math.sci.prof. Aliyev G.G.)

Work A. Mathematical research of the motion of viscous fluid with regard to
guantum mechanical effects in nanotubes

(doct. phys.math.sci.prof. Aliyev G.G.)
In the work the determining equations of the motion of viscous fluid in nanotubes

(10°m<d <10*m) are offered. The generalization of the Navier boundary condition
of fluid sliding with regard to the effect of intensity of physical fieed penetrating
deeply into the field existing on the boundary of vessel’s wells and fluid 1s given.
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The main equations of the motion of viscous fluid x, <x < g ~A:

-in the second domain

The fluid preservation equation:

The equations of motion:
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The generalized Navier boundary conditions of transfomiation of homogeneons fluid
into inhomogeneons one with regard to quantum-mechanical effects in
nanohidrodinamics are the follovings :

ov
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Here  p=p,-[l-E(x)] 1 u=u,-[1-E(x)] - are density and viscosity functions

along the fluid’s depth; v=22 is a kinematic viscosity, v, and L=R,-r, are
Po

coefficients.
All of these are dependent on the quantum-mechanical effects given from the

physical - field intensity E=?

0

penetring deeper into

the given fluid. The main quality and quantity results of hydrodynamics of
viscous fluid in nano-systems (10°m<d <10“m) are the followings:

- formation of empty space between the vessel wall and fluid in the magnitude

A:O,12-h )
2

-in the depth of fluid close to the wall the homogeneons fluid will be non —
homogeneons :

- depending on the depth of the physical field mechanical propertics of
inhomogeneons part (density p(x)and viscosity u(x)) will vary in the form :

p=p,-[I-E@)], 1=ty -[1-E(x)]

- along the section of the nanotube , the diagram of viscous fluid flow velocity
will not be parabolic , i.e. the gluing effect will be absent . The velocity of flow
near the wall will always differ from zero o, =0, i.e. the flow will slide

becauce of quantum mechanical effects .

The character of sliding velocity in the boundary between the flow and emoli space
3



Will be composed of 3 types of velocities:

The first velosity v, =+2g-¢ =4,43-2-  characterizes she velocity of fluid as of

CEeK
a solid ;

The second velosity appears at the expens of nonhomofeneity of the flow at
h do .
the Wa.” UZZUO'F(E—A—XO)'W,

The their velosity isa velosity that appears at the espense of apparent lengtu
of flow sliding in the boundary of flow and empty space . Its length equals

beetveen the atoms and A:O,lz-g,
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the value of the * forbidden zone

USZA-(:j—'r) the fluid in the nanosistems is repeatedey greater than given in

theory of classic hydrodynamics.

Work B. Diagnosis of poisoning with toxic substances.
(cand.tech.sci.lead.res.ass. Mirzazade 1.H.)

Timely and correct diagnosis of poisonings with toxic substances is basic for
selecting tactics of treatment. The character of the poisoning process is carrying out
antidate therapy immediately after diagnosis. But in addition to treatment, the result if
this treatment should also be taken into account. This time there appears a need for
monitoring, i.e. for periodic examination of the patient. The goal and function of
monitoring for the problem under consideration is to continue control of the patient
after treatment for a certain time and to select tactics of treatment according to the
patient’s state, because the complications after the poisoning are closely connected
with nervous system, cardiovascular system. One of the tactics for carrying
monitoring is determination of time and time intervals. When analyzing time series
three components are distinguished: a random component formed as a result of
influence of random factors on indicators. The use of time series method for carrying
out monitoring of poisonings with carbon dioxide are for the following goals:

- detection of variation of any exponent or a group of exponents in time;

- determination of the cause of variation of exponents;

- prognosis of exponents: to verify the validity of the Mauna — Witney, Wilkoksan,
Friedman, Klakson — Wollis criteria being the non — parameter methods of
biostatistics.

1. In Mauna — Witney U-criterion n, is the number of the first selection, n,is the

number of the second selection. The greaters from the sum of two ranks (T,) is
determined.



My - (g + 1)
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2. The Wilkokson T — criterion is used for estimating difference between the
exponents obtained before and after treatment.
3. The Friedman criterion

19n _k+l
s=n s (+reE)
If s<S,(nk) then the 0-th hypothesis is accepted (tabular value of s_).

4. the Kruskal — Wollis H — criterion x = {x,. ...,y JooX0* = Xy Xy | Will be
as the generalized selection x=x* Ux}:U..U x*. All

k 12 T2
T H _ ——3N 1

where N is the general amount of N — selection. T, is the sum of ranks in each group,
n, is the number of observations in the j-th group.

If H>H_, the 0-th hypothesis is rejected (H, is tabular value).

Numerous experiments have shown that the monitoring enables to determine

variation of indicators in time series, to choose the important ones for verification, to
detect the ones subjected to treatment and not to conduct excess poorly analyzes.

U= ny-No 4+

TOPIC 2. INTEGRAL MODELING OF FILTRATION PROCESS IN
OIL GASPRODUCTION
(doct.phys.math.sci. Aliev G.G., lead.res.ass. Abbasov E.M.)

Work A. Modeling of gas filtration process in the stratum-well system
(lead.res.ass. Abbasov E.M.)

Investigation and study of filtration process in oilgas wells with regard to
dynamic relation of stratum-well system is of great scientific and practical value.

In the paper an integral model of the process of nonstationary filtration of gas
Is constructed and pressure on the wellhead and well bottom and also production rate
dynamics are determined by wellhead information.

We consider a flatradial filtration of homogeneous gas in a uniform circular
stratum. The equation of a flatradial filtration of homogeneous gas is of the form [1-

4]:
lg(eraPJ aP’ (1)
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Boundary and initial conditions



Pl =R, >0, (2), Pl o0, t>0, 3)
r=r, or -
2rhr X P.0)+R(T) P =G(r). (4)
up 2 or |

Allowing for boundary conditions (2) and (3) we will look for the solution of
equation (1) in the form [1]:

P=P.(t)+A)f(r), (5)
where A(t) is an unknown function dependent on time t, f(r) is a function
dependent on the coordinate r and satisfying boundary conditions (2) and (3), P.(t)
IS pressure at the bottom hole, k is a stratum permeability factor, x is dynamic
viscosity of gas, m is porosity of the stratum rock, P.(0) is initial pressure at the
bottom hole, P is pressure at any point of the stratum. We choose the function f(r)
satisfying boundary conditions (2) and (3) as follows (see [1]):

r r I,
f(r)—lnr—c—R—k+R—k. (6)

Accepting the process as isothermal, the gas mass G, in the stratum at any moment of
time may be determined by the formula:

Zﬁmth rdr, (7)

G, =

where g = Pam , h is power of the stratum, P

atm

IS atmosphere pressure, p,. IS gas

atm
density at atmosphere pressure, r. is a radius of the stratum, R, is a radius of the
stratum contour, I' is a coordinate.
The gas influx from the stratum to the well per a time unit G may be
determined by the formula:

G :_ddfo . (8)
Substituting expression (5) and (6) in formula (7), we get:
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Substituting expression (9) in formula (8) we get:
amhR?| . r’ -
Pl1-—= |+ DA(t)|. 10
Pt (10)

On the other hand, gas influx into the well per a unit time may be determined
by the formula [1]:

G=-




s k(RO)+ PC(T))MC@ |
up or |,
where P (T) is pressure at the well bottom at the end of operation period.
Then substituting expression (5) in formula (11), we get:

o KRO+RM) . A(t)(l—r—cj . (12)
up Ry

Equating equations (10) and (12), we get:

A+a A= —? : (13)
The solution of differential equation (13) is of the form:

N [ S (14

where A, is an integration constant determined from initial condition (4),
S GAOELAW))

(11)

. Substituting the obtained expression in formula (5), we get

umR, D
pressure distribution field in the stratum:
rr SR e
P_Pc(t)+(lnE—R—k+R—kj{Aoexp( at) D_([Pc(r)exp[ alt—7)dz|. (15)

We now consider motion of gas in a lifting pipeline. Motion of gas in a pipeline
and equation of continuity are described by I.A. Charniy equations [5,6]:
oP  0Q oP  ,0Q
—&—E+2aQ, _E_C e Q=pv (16)
where ¢ is sound propagation velocity in gas, t is time, x is a coordinate, o is gas
density under the given pressure, v a gas flow velocity averaged in cross section of
the pipe, a is a resistance coefficient.
Having differentiated the first equation of expression of (16) in time t, and the
second one in X, and subtracting one from another, we get:
2 2
IR_202 2%, (17)
ot X ot
We represent the velocity of cross-sections of gas column as the sum of
two velocities:
v=u,+0,, (18)
where v, is the velocity of the gas column motion as a solid (traveling velocity), o,
is the velocity of cross-section of gas column from its compressibility (relative

velocity).

Substituting expression (18) in the formula

Q=pv=pu, +pu, (19)
or

Q:Ue+Ur, (20)



where u,=pv,, U =pu,.
Then, substituting expression (20) in equation (17), we get:

2 2 2
auze+au2r:czau2r—2a A, | M) (21)
ot ot X ot ot
As equation (21) is linear, then it is decomposed into two equations :
) y
o°u, %2 ou, _R-P ’ (22)
ot’ ot |
where P, is pressure at the bottom head.
, , , g
0 uzr _c? 9 uzf oM R ZR (23)
ot OX ot |

Having placed the origin of the coordinate axis x in the lower section of the
pipe and directing it upwards, for initial and boundary conditions we have:

ul _G(0) (24), Wl o (25, ul_.=0 (26)
elt=0 f dt -0 r t=0

aUr _ _ aur —

. =0 (27) u_,=0 (28), x| 0 (29)

where f is the area of the flow section of the pipe.
Applying the Laplace transform and taking into account the convolution
theorem [7-9], allowing for initial conditions (24) and (25) we get:
G(0

.= 80 L o[- 2a(t- e L R o[- 2a(t e i -

— - ep(-2a)[P,(0)- PO+ [R.(0)-RO)]. (30)

Allowing for boundary conditions (28) and (29), we will look for the solution
of equation (23) in the form: ([5], [6], [7]):

u, :iznl:(pi (t)(l—cosil—”xj, (31)

where ¢,(t) is an unknown function dependent on time t, I is the pipe run depth.
Substituting expression (31) in equation (23), multiplying the both hand sides of the

obtained expression by (1—cosiT”Xj and integrating it from 0 to I, we get the
equation:
gbﬁ%gbﬁ%@i =§(PU—F'>C). (32)
Applying the Laplace transform and taking into account the conversion and

convolution theorems ([8], [9]), with regard to initial conditions (26) and (27) from
equation (32) we get:

t

, :ﬂj R, (o alt—leos oyt~ —-2 7, (ew[-alt o)
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p. exp(~at)sin(wt) .t[Pu (r)exp[-alt —7)]cos [w,(t—7)d 7+

+§'[Pc( 7)exp[-alt —z)Jsin[w, (t — 7)jd z +— (O)exp( at)sin(a)t)}, (33)
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From the continuity condition allowing for boundary condition (28) and
expressions (30), (31) and (33), we get the following integral equation:

G(O)exp(—ott)—k(Pé)ﬂﬂth (r)expl-alt—7)Jdr =c3(0)+2fa|[F>u (0)-P,(0)]+

0

f
+_
I

O — )

P (r)exp|- 2a(t—r)]dr—|i [P.(r)ew[-2at— o)l -

_ ZLaI exp(— 2at)[Pu (0)-P (0)] :

c

(34)

Using the Laplace transform and taking into consideration the convolution and
conversion theorems, from expression (34) we get:

P, = a(o){exp(— A rem () g“ RO-RO)_cO],
% 2aa+(a_ﬂ1)(2a_ﬂ1)e . +( _ﬂz)(za_ﬂz)e . i
|:ﬂ1ﬁ2 181(181 _132) xp( ﬂlt) 182 (/32 _181) Xp( ﬂZt)}

- {ZZ ﬁll ! (t)ep[- At -7)dr+ Z‘_—ﬂzj P, (r)exp[- B,(t —r)]dr} _

__f _ a-p a-p,
s P0-R O£ (-t £~ (- i)
+?{exp(— ﬁlt)za_é +ep(- ﬁzt)ﬂ} , (35)

ﬂl _ﬂz
where b :M%h P, pressure on the stratum contour.
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B, and g, are the roots of the equation

sz+(a+ijs+ia=0. (36)
bl bl

We consider how pressure changes at the bottom hole when shutting-in it from
the well head.

Assume that when the well is shutting-in, gas mass flow on its head decreases
by the linear law

ol o)

where T, is a time period for which the well shuts-in, G, is gas influx in to the well
head per a unit time at the beginning of well shut-in operation.



We determine the head and bottom hole pressure. From the continuity
condition on the well head, with regard to expressions (30), (31), (33) and (37), using
the Laplace transform we get:

Go),1 R 1 R +§z{ P, P()P@)

fs Is(s+2a) Is(s+2a) &3l (s+af+w’ (s+a)+
sP. G (1 1

e S )

From expression (38) for G(0)=G; we will have:

(s+a) + o N sP, - P,(0)
s[(s +af +o’ + :23(3 + 2a)s} s{(s +af + o’ + 2 (s+ 2a)s}

5 s(s+2a) 2 [R(0)-P.(0)s+2a)

R=P.0) :

+

wliN

(s+a)2+a)2+§(s+2a)s 3 (s+a)2+a)2+§(s+2a)s

A (s+2a)((s+a)2+a)2)

f Ts? (39)

(s+a) + o’ +§(s+2a)s

Now, determining from expression (34) the image of P, and equating it to the

right hand side of the expression (39), one can find the image of the well head
pressure:

5 _G0a_ Dup RO f(RO)-RO) Duplta) |
"¢ zhk(R +P(0) s 2als®  zhk(P. +P,(0))
. f(R0)-R0) Dﬂﬂ@+a)+fM®—R®XF
2als(s+2a) zhk(P. +P,(0)) s
L (R0)-P(0) fDupls+a) Gl (s+as+af+af)
s’(s+2a) zhkl(P. +P(0)) fTs?[s?® 2as
{3+3+a) +a}
G, (s+als+af+w?) fDup(s+a)
TS {s:z(asm_z +azﬁ ﬂhk’L(JPT +P.(0)’ (40)
3 3
where af—ﬁ— ?

' 31

For t =T, from the expression (37) it can be seen that Q=0. Then the
wellhead pressure for t>T, is determined from expression (40) only with a difference
that everywhere instead of t we put t-T,, and instead of G, =0.

Thus, wellhead pressure change after wells shut-in occurs by the formula:

R =Py O )~ 1t -T)l+n(t-T,) R, (1), (41)
where 7 is a Heaviside function, Pu1(t) is pressure change at the wellhead for
O<t<T, determined from equation (40), Puz(t) is the same determined from

10



expression (40) for G; =0. Passing to original from expression (40) with regard to
convolution and conversion theorems for the following values of parameters

c=300m-cl; #=10"Pa-c; h=10u; k =510 14 42; p=0.668 k- 1>
| =3000 m; B, =2.5-10" [Ta; Py = 24-10° ITa; Py =8-10° Ia;
P.(0)=24-10°ITa ; P, =10°ITa; T =5¢; R, =300 ; 7 =314

a=10"c?; m=02;d=6-10"x; 1, =7.5-107% u.
we get an expression of the wellhead pressure whose graphs are represented in fig.
land 2
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Fig. 1

The graphs of dynamics of pressure at the well head in the time interval of well shut-
in depending on the depth of lifting pipes:

1-1=1000m, 2-1=2000r, 3—1=23000.m.
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Fig.2
The graphs of dynamics of pressure at the well head after well shut-in depending on

the depth of lifting pipes:
1-1=1000m, 2-1=2000m, 3—1=3000m.
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Now we consider the gas production process. Assume that the well head pressure
decreases in the course of time by the linear law :

R, ()=, (0)- 2LORT) ¢ (42)

u 1

where T is gas production period, P,(T) is pressure at the well head at the end
of production. Then substituting expression (42) in formula (35) we get:

_ a2 B o g\2RF f(PC(O)—Pu(o))_G(O)}
PC—PC(O){exp( Bi) 5 ﬂl+exp( PR, ﬂzH ool .

20a  (a-p)2a-B) o ap, @=B)2a=B) snl,
{ﬂlﬂf A—p) PP G gy el ﬂzt)}

L Fa-p R0 PO-R[t 1
s ﬂl{ R s bty ﬁlt))}+

Jfa-p RO, RO-R[t 1, _
te ﬂz{ 04 -epp)-BURIL L oot ﬂzt»}

(PO-PO)(a=B . ( . 2=B
A ﬁlexp( B+ 53 exp(-A,t) |+

G(O){Za B ool pit) s 2= o ﬂzt)] (43)

b ﬁz 181 181_:82
Allowing for expression (14), from expression (12) we get:
G =G(0)exp(~at)- (P[()O%;zth (r)exp[-alt-7)dr, (44)
0
where G(0) is gas influx into the well per a unit time at initial time.
Now, allowing for formula (43), for the above values of parameters, from the
expression (44) we get:
G =8.5-10"°exp(-2.57-10°°t) +
+0.28exp(~1.34-107"t) —1.7exp(-0.01t) +1.41. (45)
By formulas (43) and (45) the numerical analysis is carried out for the above

parameters of the system and k =10~ 1432, k=5-10"x2, k=10"13,2.

The results of numerical calculations are represented in fig. 3 and fig. 4.

12
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Fig. 3
The graph of pressure dynamics at the well bottom.
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Fig. 4
The graph of gas influx per a unit time at the well head.

1-k =102 2-k=5-10x2 3-k=10"13,2.

Thus, we constructed an integral model of nonstationary gas filtration process
in the stratum-well system. The analytical expressions allowing to determine well
productivity and also bottom head and bottom hole pressure for its not instant
termination of gas influx into the well and to study pressure restoration curves.
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