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Annual report of “Applied Mathematics” department of IMM 

for 2019 

 

The staff of “Applied Mathematis” department consists of 5 employees: 1 

prof.,doct.phys.math.sci.,  1 doctor of mech.sci.sen.res.ass.;  1 cand.techn.sci.; 

sen.res.ass.;  2 laboratory assistants . 

In 2019 “ Applied Mathematics” department the following researches were 

carried out around two topics: 

 

TOPIС 1. Bases of viscous fluid  hydrodynamic with reqard to physical media in

         nanosistems. 

(doct. phys.math.sci.prof. Aliyev G.G.) 

 

Work A. Mathematical research of the motion of viscous fluid with regard to 

quantum mechanical effects in nanotubes 

(doct. phys.math.sci.prof. Aliyev G.G.) 

In the work the determining equations of the motion of viscous fluid in nanotubes   

( mdm 49 1010   )  are offered. The generalization of the Navier boundary condition 

of fluid sliding with regard to the effect of intensity of physical fieed penetrating 

deeply into the field existing on the boundary of vessel’s wells and fluid is given.  

 

 

 

     Fig.1 
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     Fig.2 

The main equations of the motion of viscous fluid 
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- The fluid preservation equation: 

- The equations of motion: 
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The generalized Navier boundary conditions of transfomiation of homogeneons  fluid 

into inhomogeneons one with reqard  to quantum-mechanical effects  in 

nanohidrodinamics are the follovings : 
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Here    )](
~

1[0 хE   и )](
~

1[0 хE     - are  density and viscosity  functions 

along the fluid’s depth; 
0

0




     is  a  kinematic viscosity, 0  and 00 rRL    are  

coefficients. 

All of these are dependent on the quantum-mechanical effects given from  the  

physical -  field intensity  
0

)(

E

xE
E 


  penetring deeper into  

the given  fluid. The main quality and quantity  results of hydrodynamics  of  

viscous fluid in nano-systems  ( mdm 49 1010   )  are the followings: 

- formation of empty space  between the vessel wall  and  fluid in the   magnitude 

2
12,0

h
    , 

-in the depth  of  fluid  close  to the wall the homogeneons   fluid  will  be  non – 

homogeneons : 

 - depending on the  depth  of  the  physical  field  mechanical  propertics   of  

inhomogeneons    part  (density )(х and  viscosity )(х )   will  vary in the form :  

 )](
~

1[0 хE  ,            )](
~

1[0 хE     

- along  the  section of the  nanotube  , the  diagram of  viscous  fluid flow velocity 

will not  be  parabolic  ,   i.e.  the gluing effect will be  absent . The velocity  of  flow  

near  the wall  will  always differ from zero  00  ,   i.e.  the   flow  will slide  

becauce of quantum  mechanical effects . 

The  character of sliding velocity in  the boundary between the flow and emoli space 
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Will be composed of  3 types of  velocities:  

The first velosity   
сек

м
g 43,420      characterizes  she velocity  of  f luid  as  of 

a solid ; 

The second  velosity  appears  at the  expens  of    nonhomofeneity  of the  flow  at 

the  wall  
dr

d
x

h 
  )

2
( 002

; 

The   their  velosity  is a  velosity that  appears  at  the  espense  of  apparent  lengtu  

of  flow  sliding  in  the  boundary  of  flow  and  empty  space  .   Its  length equals  

the value  of the  “ forbidden zone “   beetveen the atoms and   
2

12,0
h
 ,             

dr

d
 3     the   fluid in the  nanosistems  is  repeatedey  greater  than  given  in  

theory  of  classic  hydrodynamics.  

 

Work B. Diagnosis of poisoning with toxic substances. 

(cand.tech.sci.lead.res.ass. Mirzazade I.H.) 

Timely and correct diagnosis of poisonings with toxic substances is basic for 

selecting tactics of treatment. The character of the poisoning process is carrying out 

antidate therapy immediately after diagnosis. But in addition to treatment, the result if 

this treatment should also be taken into account. This time there appears a need for 

monitoring, i.e. for periodic examination of the patient. The goal and function of 

monitoring for the problem under consideration is to continue control of the patient 

after treatment for a certain time and to select tactics of treatment according to the 

patient’s state, because the complications after the poisoning are closely connected 

with nervous system, cardiovascular system. One of the tactics for carrying 

monitoring is determination of time and time intervals. When analyzing time series 

three components are distinguished: a random component formed as a result of 

influence of random factors on indicators. The use of time series method for carrying 

out monitoring of poisonings with carbon dioxide are for the following goals: 

- detection of variation of any exponent or a group of exponents in time; 

- determination of the cause of variation of exponents; 

- prognosis of exponents: to verify the validity of the Mauna – Witney, Wilkoksan, 

Friedman, Klakson – Wollis criteria being the non – parameter methods of 

biostatistics. 

1. In Mauna – Witney U-criterion 1n   is the number of the first selection, 2n is the 

number of the second selection. The greaters from the sum of two ranks  xT  is 

determined. 
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2. The Wilkokson T – criterion is used for estimating difference between the 

exponents obtained before and after treatment. 

3. The Friedman criterion 

  
If   knSS ,   then the 0-th hypothesis is accepted  (tabular value of S ). 

4. the Kruskal – Wollis H – criterion    
k

k

nkk

n

kn

n
xxxxxx ................ 11111 1

1   will be 

as the generalized selection kn

k

nn
xUUxUxx ...21

21 . All  

                                              

where N is the general amount of  N – selection. 1T  is the sum of ranks in each group, 

1n  is the number of observations in the  j-th group. 

 If HH  , the 0-th hypothesis is rejected  ( H  is tabular value). 

Numerous experiments have shown that the monitoring enables to determine 

variation of indicators in time series, to choose the important ones for verification, to 

detect the ones subjected to treatment and not to conduct excess poorly analyzes.  

 

TOPIС 2. INTEGRAL MODELING OF FILTRATION PROCESS IN  

  OIL GASPRODUCTION 

 (doct.phys.math.sci. Aliev G.G., lead.res.ass. Abbasov E.M.) 

 

Work A.  Modeling of gas filtration process in the stratum-well system 

(lead.res.ass. Abbasov E.M.) 

 

Investigation and study of filtration process in oilgas wells with regard to 

dynamic relation of stratum-well system is of great scientific and practical value.  

 In the paper an integral model of the process of nonstationary filtration of gas 

is constructed and pressure on the wellhead and well bottom and also production rate 

dynamics are determined by wellhead information.   

We consider a flatradial filtration of homogeneous gas in a uniform circular 

stratum. The equation of a flatradial filtration of homogeneous gas is of the form [1-

4]: 

t

P

r

P
r

rr 





















1
,     (1) 

где  
m

kP


  . 

Boundary and initial conditions 
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 Allowing for boundary conditions (2) and (3) we will look for the solution of 

equation (1) in the form [1]: 

     rftAtPP c  ,         (5) 

where  tA  is an unknown function dependent on time t ,  rf  is a function 

dependent on the coordinate r  and  satisfying boundary conditions (2) and (3),  tPc  

is pressure at the bottom hole, k  is a stratum permeability factor,   is dynamic 

viscosity of gas, m  is porosity of the stratum rock,  0Pc  is initial pressure at the 

bottom hole, P  is pressure at any point of the stratum. We choose the function  rf  

satisfying boundary conditions (2) and (3) as follows (see [1]): 

 
k

c

kc R

r

R

r

r

r
rf  ln .        (6) 

Accepting the process as isothermal, the gas mass 0G  in the stratum at any moment of 

time may be determined by the formula: 

 
k

c

R

r

rdrP
hm

G


2
0 ,        (7) 

where 
atm

atm




P
 , h  is power of the stratum, atmP  is atmosphere pressure, atm  is gas 

density at atmosphere pressure, cr  is a radius of the stratum, kR  is a radius of the 

stratum contour, r  is a coordinate.  

The gas influx from the stratum to the well per a time unit G  may be 

determined by the formula: 

dt

dG
G 0 .              (8) 

 Substituting expression (5) and (6) in formula (7), we get: 
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Substituting expression (9) in formula (8) we get: 
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On the other hand, gas influx into the well per a unit time may be determined 

by the formula [1]:  
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,         (11) 

where )(TPc  is pressure at the well bottom at the end of operation period. 

Then substituting expression (5) in formula (11), we get: 
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.        (12) 

Equating equations (10) and (12), we get: 

 
D

tP
AA


  .               (13) 

The solution of differential equation (13) is of the form: 

        dtP
D

tAA

t

c   exp
1

exp
0

0
 ,     (14) 

where 0A  is an integration constant determined from initial condition (4), 

DRm

TPPk

k

cc




))()0(( 
 . Substituting the obtained expression in formula (5), we get 

pressure distribution field in the stratum: 
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We now consider motion of gas in a lifting pipeline. Motion of gas in a pipeline 

and equation of continuity are described by I.A. Charniy equations [5,6]: 

              aQ
t

Q

x

P
2









 ,     

x

Q
c

t

P









 2 ,   Q                    (16) 

where c  is sound propagation velocity in gas, t  is time, x  is a coordinate,   is gas 

density under the given pressure,   a gas flow velocity averaged in cross section of 

the pipe, a  is a resistance coefficient.  

 Having differentiated the first equation of expression of (16) in time t , and the 

second one in x , and subtracting one from another, we get: 

t

Q
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Q
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t
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.           (17) 

 We represent the velocity of cross-sections of gas column as the sum of 

two velocities: 

re   ,            (18) 

where e  is the velocity of the gas column motion as a solid (traveling velocity), r  

is the velocity of cross-section of gas column from its compressibility (relative 

velocity). 

Substituting expression (18) in the formula  

reQ             (19) 

  

or 

re uuQ  ,            (20)  
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where  eeu  , rru  . 

Then, substituting expression (20) in equation (17), we get: 
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As equation (21) is linear, then it is decomposed into two equations : 

l
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,        (22) 

 where yP  is pressure at the bottom head. 
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Having placed the origin of the coordinate axis x  in the lower section of the 

pipe and directing it upwards, for initial and boundary conditions we have: 
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  (29) 

where f  is the area of the flow section of the pipe. 

Applying the Laplace transform and taking into account the convolution 

theorem [7-9], allowing for initial conditions (24) and (25) we get: 
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Allowing for boundary conditions (28) and (29), we will look for the solution 

of equation (23) in the form: ([5], [6], [7]):  
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ir
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1
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 ,        (31) 

where  ti  is an unknown function dependent on time t , l  is the pipe run depth. 

Substituting expression (31) in equation (23), multiplying the both hand sides of the 

obtained expression by 









l

xi
cos1  and integrating it from 0  to l , we get the 

equation: 
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 .       (32) 

Applying the Laplace transform and taking into account the conversion and 

convolution theorems  ([8], [9]), with regard to initial conditions (26) and (27) from 

equation (32) we get: 
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From the continuity condition allowing for boundary condition (28) and 

expressions (30), (31) and (33), we get the following integral equation:  
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Using the Laplace transform and taking into consideration the convolution and 

conversion theorems, from expression (34) we get: 
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where 
  

D

hPPk
b ck 



0
  , kP  pressure on the stratum contour. 

1  and 
2  are the roots of the equation 

02 
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f
as .                (36) 

We consider how pressure changes at the bottom hole when shutting-in it from 

the well head.  

 Assume that when the well is shutting-in, gas mass flow on its head decreases 

by the linear law 













0

1 1
T

t
GQ ,                    (37) 

where 0T  is a time period for which the well shuts-in, 1G  is gas influx in to the well 

head per a unit time at the beginning of well shut-in operation. 
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We determine the head and bottom hole pressure. From the continuity 

condition on the well head, with regard to expressions (30), (31), (33) and (37), using 

the Laplace transform we get: 
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From expression (38) for   10 GG   we will have: 
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Now, determining from expression (34) the image of cP  and equating it to the 

right hand side of the expression (39), one can find the image of the well head 

pressure: 
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,               (40) 

where  2

2

222
2

3
a

l

ic
i 


 . 

For 0Tt   from the expression (37) it can be seen that 0Q . Then the 

wellhead pressure for 0Tt   is determined from expression (40) only with a difference 

that everywhere instead of t  we put 0Tt  , and instead of 01 G . 

Thus, wellhead pressure change after wells shut-in occurs by the formula: 

     tPTtTtttPP
2u001u

*

u )]()([   ,    (41) 

where   is a Heaviside function,  tP
1u  is pressure change at the wellhead for 

Tt 0 , determined from equation (40),  tP
2u  is the same determined from 
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expression  (40) for 01 G . Passing to original from expression (40) with regard to 

convolution and conversion theorems for the following values of parameters  

1см300 -c ; с10 5   Pa ; мh 10 ; 2мk 14105  ; 
3-мкг  668.0 ; 

мl 3000 ; ПаPk
7105.2  ; Па10P 6 240 ; ПаPT

6108  ; 

 ПаPc
61024)0(  ; ПаP 5

atm 10 ; сT 5 ; мRk 300 ; 14,3 ; 

1110  ca ; 2.0m ; мd 2106  ; мrc
2105.7  . 

we get an expression of the wellhead pressure whose graphs are represented in fig.  

1 and  2 

 
Fig. 1 

The graphs of dynamics of pressure at the well head in the time interval of well shut-

in depending on the depth of lifting pipes:      

мlмlмl 30003,20002,10001  . 

 

 
                                                                Fig.2    

 

The graphs of dynamics of pressure at the well head after well shut-in depending on 

the depth of lifting pipes:  

 мlмlмl 30003,20002,10001  . 
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 Now we consider the gas production process. Assume that the well head pressure 

decreases in the course of time by the linear law : 

   
   

t
T

TPP
PtP 


 uu

uu

0
0 ,                 (42) 

where T  is gas production period,  TPu  is pressure at the well head at the end 

of production. Then substituting expression (42) in formula (35) we get: 

   
  

































b

G

alb

PPfa
t

a
tPP c

cc

)0(

2

0)0(2
exp

2
exp)0( u

21

2
2

12

1
1









  

  
 

 
  

 
  


















 t

a
t

aa
2

122

22
1

211

11

21

exp
2

exp
22














 

 
  

 
   
























 t

t

T

PP
t

P

lb

f
12

110

0u
1

1

u

12

1 exp1
10

exp1
0








 

 
  

 
   
























 t

t

T

PP
t

P

lb

f
22

220

0u
2

2

u

21

2 exp1
10

exp1
0








 

  
    


















 tt

lba

fPPc
2

21

2
1

12

1u expexp
2

0)0(










 

   

















 t

a
t

a

b

G
2

21

2
1

12

1 exp
2

exp
2)0(










.             (43) 

Allowing for expression (14), from expression (12) we get: 
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c
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D

PPk
tGG
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exp
)0(

exp)0( 


  ,    (44) 

where  0G  is gas influx into the well per a unit time at initial time. 

Now, allowing for formula (43), for the above values of parameters, from the 

expression (44) we get: 

  )1057.2exp(105.8 66 tG  

41.1)01.0exp(7.1)1034.1exp(28.0 7   tt .      (45) 

 By formulas (43) and (45) the numerical analysis is carried out for the above 

parameters of the system and 
2мk 1410 , 

2мk 14105  , 
21310 мk  . 

  

 

The results of numerical calculations are represented in fig. 3 and fig. 4.               



 

13 

 

 
                                                           Fig. 3  

              The graph of pressure dynamics at the well bottom. 

 
                                                           Fig. 4  

       The graph of gas influx per a unit time at the well head. 

         
214101 мk  ,  

2141052 мk  ,   
213103 мk  . 

 

Thus, we constructed an integral model of nonstationary gas filtration process 

in the stratum-well system. The analytical expressions allowing to determine well 

productivity and also bottom head and bottom hole pressure for its not instant 

termination of gas influx into the well and to study pressure restoration curves.  
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