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GENERAL CHARACTERISTICS OF THE WORK
Rationale of the topic and degree of development. The dissertation work was devoted to the study of convergence of spectral expansions in eigen and associated functions of a third order ordinary differential operator.

It is known that researches on spectral theory of ordinary differential operators take their start from the classic works of J.Liouville, Sh.Sturm and in later works of V.A.Steklov, Ya.D.Tamarkin, D.Birkhoff and other authors who studied asymptotics of eigenvalues and convergence of spectral expansions for various classes of boundary value problems.

During a long time, the main object of study were spectral properties of self-adjoint differential operators. However, in the last fifty years new problems of mathematical physics reducing to the study of spectral properties of not self-adjoint differential operators have arisen. The Bitzadze-Samarsky problem with nonlocal boundary conditions for a heat equation may serve as an example of such problems.

When studying not selfadjoint problems it was noticed that the system of eigen functions of such operators, generally speaking not only does not form a basis in the class [image: image2.png]


, but also is not complete in [image: image4.png]


. Therefore such systems should be supplemented with associated functions. In these problems, eigen and associated functions (root functions), generally speaking, are not orthogonal in [image: image6.png]


, and neither their closeness nor their minimality imply their basicity in this space.
Thus, the study of not selfadjoint problems reguire new approaches. M.V.Keldysh established the fact of completeness in [image: image8.png]


 of specially constructed system of root functions for a wide class of boundary value problems. Further, the completeness for a wide class of boundary value problems was studied in the papers of V.B.Lidsky, M.A.Naimark, V.N.Vizitey, A.S.Markus, J.E.Allahverdiyev, M.G.Gasimov, A.P.Kostyuchenko, A.P.Khromov, V.P.Mikhaylov, G.M.Keselman, A.M.Kroll, A.A.Shkalikov and others.
The last years, the method developed by V.A.Il'in is successfully used for studying differential operators. He has noticed that in the presence of infinitely many associated functions, the basicity and equiconvergence properties unlike the completeness property substantially depend on the choice of root functions and also are not determined only by the concrete from of boundary conditions. The values of the coefficients of a differential operator also affect on these properties and these properties change for whatever small change of the value of coefficients in the metrics of the classes where these coefficients are given. Therefore, in this situation, the basicity and equiconvergence conditions in the terms of boundary conditions can not be formulated. In this connection, V.A.Il'in offered a new treatment of root functions that are understood as regular solutions of the corresponding equation with a spectral parameter regardless of the form of boundary condition. It allows to consider arbitrary boundary conditions (both local and nonlocal) the systems of functions not associated with any boundary conditions and also some systems obtained by combining the subsets of the root functions of two various boundary value problems.

In his papers V.I.Il'in considered a system of root functions of an ordinary differential operator and under some natural conditions he established theorems on uniform  equiconvergence and basicity on a compact.

Further, the study of these and other problems of spectral theory of differential operators was papers of V.A.Il'in and his followers: V.V.Tikhomirov, I.Io, I.S.Lomov, N.B.Kerimov, V.D.Budaev, V.Komornik, L.V.Kritskov, L.Lazhetich, V.M.Kurbanov and others.
Notice that componentwise equiconvergence for Schrodinger's operator was studied in the paper of V.A.Il'in and in the papers of V.M.Kurbanov. Componentwise equiconvergence rate in the metrics     C and [image: image9.wmf]p

L

 was studied by V.M.Kurbanov.
Asbosute and uniform convergence and rate for Schrodinger's operator were studied in the papers of N.Lazhetich, V.M.Kurbanov, R.A.Safarov, A.T.Garayeva, for Dirac's operator in the papers of V.M.Kurbanov and A.I.Ismayilova.
Recently, dependence of convergence and equiconvergence rate on various characteristics is intensively investigated and a number of important results were established by V.M.Kurbanov, R.A.Safarov, L.S.Lomov, A.S.Markov, A.T.Garayeva.

In spite of the above studies, uniform equiconvergence rate on a  compact and uniform convergence rate on a segment for higher order differential operators were not studied enough. Therefore, the further study of these and other issues for differential operators by the V.A.Il'in method is of interest.
In this dissertation work we study absolute and uniform convergence,  uniform convergence rate of orthogonal expansion of a function from the class 
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We study absolute and uniform convergence of biorthogonal expansions of the function 
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 in root functions of a third order differential operator with smooth coefficients, establish uniform convergence rate of these biorthogonal expansions.
Goal and tasks of the research. To research absolute and uniform convergence and uniform equiconvergence rate on a compact of spectral expansions in root functions of a third order ordinary differential equation.

Investigation methods. In the work, the methods of theory of differential operators, theory of functional analysis and theory of harmonic analysis are used.
The key points to be defended. The following key points are defended:

· The results of studies on absolute and uniform convergence on the segment [image: image14.wmf][
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· The result of studies on absolute and uniform convergence of orthogonal expansion of the function [image: image17.wmf]),
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· The results of studies of uniform equiconvergence on a compact with trigonometric series of expansions in root functions of a third order differential operator with summable coefficients from the class [image: image19.wmf]1
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· The results of studies on absolute and uniform convergence of biorthogonal expansions of a function from the class  [image: image21.wmf])

1

,

0

(

G

),

G

(

W

1

2

=

, in the system of root functions of a third order ordinary differential operator and estimates of uniform convergence rate of these biorthogonal expansions.

Scientific novelty of the research. In the dissertation the following main results were obtained:

· Absolute and uniform convergence on the segment 
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· Absolute and uniform convergence of orthogonal expansion of the function 
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 EMBED Equation.3 [image: image26.wmf])
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· Theorems on uniform equiconvergence on a compact with trigonometric series of expansions in root functions of a third order differential operator with summable coefficients for a function from the class 
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 was estimated.
· Theorem on absolute and uniform convergence of biorthogonal expansions of a function from the class  
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Theoretical and practical value of the research.   Its results may be used in spectral theory of differential operators; when justifying the solution of mathematical physics problems by the Fourier method and in theory of approximation of function.
Approbation and usu. The main results of the dissertation were repeatedly reported: at the International conference dedicated to 90-th anniversary of Heydar Aliyev (Baku 2013), at the International conference dedicated to 55 years of IMM (Baku 2014); at the International conference of Azerbaijan-Turkey-Ukraine MADEA-7 (Baku 2015), at the Republican conference dedicated to 100 years of honoured scientist prof. A.Sh.Habibzade (Baku 2016), at the seminar of the departments "Functional analysis" (the head of department  prof. G.I.Aslanov), "Differential Equations" (the head of department prof. A.B.Aliyev) of IMM of ANAS.
Personal contribution of the author. All conclusions and obtained results belong to the author.
Author's publications.    The basic results of the dissertation were published in  10   papers whose list is at the end of the abstract.
The organization where the work was executed. The work was executed at the department of "Functional analysis" of IMM of ANAS.
Structure and volume of the dissertation (in signs with indicating the volume of each structural subsection separately).  The volume of the dissertation wirk consists of –207693 signs (the title page – 320 signs, the content 2173 signs, introduction – 50000 signs, chapter I – 84000 signs, chapter II – 70000 signs, conclusions - 1200 signs). The list of references consists of  72 names.
THE CONTENT OF THE DISSERTATION
In the introduction the rationale of the work is justified, brief review of the results related to dissertations topic is given and the main results of the dissertation work are stated.
The dissertation work consists of introduction, two chapters, lists of references. Each chapter is divided into sections.
In chapter I the main results concerning orthogonal expansion in eigen functions of a third order differential operator with summable coefficients are stated. Absolute and uniform convergence of orthogonal expansion of an absolutely continuous function from the class 
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,  in eigen functions of the given operator is proved and uniform convergence rate of this expansion is established, the influence of uniform convergence rate is studied; degree of summability of the coefficients of this operator and degree of summability of the derivative of the expanded function.

In section 1.1 we consider a formal differential operator                                                                                                                                                                                                                                                                                        
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Denote by 
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Introduce a partial sum of spectral expansion of the function 
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In the given section we prove the following theorems.

Theorem 0.0.1. Let 
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Corollary 0.0.1. If in theorem 0.0.1. the function 
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is valid. But if  
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Theorem 0.0.2. Let 
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Corollary 0.0.2. If in theorem  0.0.2  
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Theorem 0.0.3. Let 
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Corollary 0.0.3. If in theorem 0.0.3  
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Note that similar results for the Schrodinger operator 
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Based on this estimation in this section we prove the following theorem. 
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The proof of theorem  0.0.5 is based on the following lemma. 
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In chapter II of the dissertation on the interval 
[image: image176.wmf])

1

,

0

(

=

G

 we consider a third order ordinary differential operator with summable complex valued coefficients. We study equiconvergence of biorthogonal expansion of a function from the class  
[image: image177.wmf],

1

),

(

³

p

G

L

p

 with its trigonometric Fourier series. Uniform equiconvergence rate on a compact is estimated, influence of continuity modulus of the coefficients 
[image: image178.wmf])

(

2

x

P

 on equiconvergence rate is studied. Absolute and uniform convergence on 
[image: image179.wmf][

]

1

,

0

=

G

 of biorthogonal expansion of a function from the class 
[image: image180.wmf])

(

1

2

G

W

 in eigen and associated functions of the given operator is also studied.

In section 2.1. we consider a third order ordinary differential operator

[image: image181.wmf](

)

(

)

(

)

u

)

x

(

P

u

)

x

(

P

u

)

x

(

P

u

Lu

3

1

2

2

1

3

+

+

+

=

,           (0.0.10)

where
[image: image182.wmf]1,3

i

G),

(

L

(x)

P

oc

1

i

=

Î

l

.
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We will consider every eigen function as an associated function of order 0. The highest order of the root functions (associated) of function responding to the given eigen function we will call the rank of this eigen function.
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The main results of this section are the following theorems:
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Here the constants 
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A number of corollaries follow from theorem 0.0.7:
Corollary 0.0.6. Under the condition of theorem 0.0.7 we have the estimations  
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where the symbol «O» depends on the function 
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Note that uniform equiconvergence on a compact was studied in an exhaustive manner in the papers of V.A.Il’in, V.M.Kurbanov, R.A.Safarov, A.T.Garayev for Schrodinger operator with a summable potential. Influence of degree of summability of the coefficients of a differential operator on uniform equiconvergence rate was studied in the papers V.S.Rykhlov, V.M.Kurbanov, R.A.Safarov, A.T.Garayeva. In his papers of V.M.Kurbanov established estimations of uniform equiconvergence in the terms of integral module of continuity of the expanded function. Dependence of uniform equiconvergence rate on a  modulus of continuity  of the potential of one dimensional Schrodinger operator was studied in the papers V.M.Kurbanov and A.T.Garayeva. 
In the last section of the dissertation we consider a formal integral operator 
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In conclusion the author expresses her deep gratitude to her supervisor prof. V.M.Kurbanov for the problem statement, constant attention and useful advices.  
CONCLUSIONS 
· Absolute and uniform convergence on the segment 
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· Theorem on absolute and uniform convergence of biorthogonal expansions of a function from the class  
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