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GENERAL CHARACTERISTICS OF THIS WORK

Rationale of the work.

The mathematical model of the processes of light wave
propagation in nonlinear media is a Cauchy problem for the
nonlinear Schrodinger equation:

igt—u+iﬂ|u|qu=Au+a|u|pu in R"xR,, (1)

Uu/y_g = Ug(x), )
where q>0,p>0,5>0,a+=0,u, —is a function given in R". For
equation (1) we set a mixed problem as well.

For B =0 the problem (1)-(2) is studied very intensively in
the scientific literature. For =0 quite a lot of works were devoted
to different properties of problem (1)-(2). The papers of Jiber A.V.,
Shabat A.G., Kudryashev O.l., Sakbayeva V.J., Jidkova P.E.,
Gilassey R.T., Merle F., Tsutsumi S., Tsvetkov N., Strauss W., Nawa
H., Cazenave T., Weissler F.B. and other were devoted to blow up of
solutions of problem (1)-(2) for #=0,a>0. Local solvability of
problem (1)-(2) for g =0 in various function spaces were studied in
the papers of Ginibre J. and Velo G., Baillon J.B., Gazenave T.,
Figueiza, Shabat A.B. and others.

Solvability of the first mixed problem with a homogeneous
boundary condition for the equation for 8 >0, =0 was studied by
Lions J.L. for £ >0,a =0 by Vladimirov M.V. and others.

It should be noted that solvability of problem (1)-(2) for
B =0,a>0in the supercritical case are unknown to the author in the
scientific literature. The blow up rate of the solutions of problem (1)-
(2) for p=0,« >0 in critical and supercritical cases in the scientific
literature, the author is unknown.

In the papers of Vladimirov M.V., the first mixed problem
with a homogeneous boundary condition for equation (1) was studied
without determining the sign of the parameter « and the behavior of
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solution as t —oowas not researched. Then global solvability of the
Cauchy problem for the Schrodinger-Hartry equation was not studied
in critical and supercritical cases.

In scientific literature there is no studies on self-canalization
of the solutions of problem (1)-(2) for =0, >0 with a nonlinear

term of the form f(1u|2)1 instead of |u/"u under appropriate

conditions on the function f([u|2).

When solving global solvability of problem (1)-(2) for
£ =0,a>0in supercritical and critical cases there arises a problem

of determination of the best constant and its estimation in Giliardo-
Nirenberg-Sobolev inequality.

Proceeding from these arguments, we can conclude that the
topic of the dissertation work was devoted to solvability, blow-up,
self-canalization and behavior of solution as t—>o of the
Schrodinger, Schrodinger-Hartry and Ginzburg-Landau evolution
equation and creation of appropriate mathematical tool is urgent and
Is of great interest both from theoretical and practical point of view.

Object and subject of research.

The main object of the dissertation work is the calculation of
optimal constants in Sobolev inequalities and their application to
Schrodinger, Schrodinger-Hartry and Ginzburg-Landau nonlinear
evolution equations.

The goal and objectives of the study.

The goal of the work is in solving the following main
problems.

1. Studying solvability, blow-up, behavior as t —oo of the
solutions of problem (1)-(2).

2. Studying solvability, blow-up of the solutions of the first
boundary value problem with a homogeneous boundary condition for
equation (1).

3. Studying solvability and blow-up solutions of the Cauchy
problem for the Schrodinger —Hartry equation.



4. Studying blow-up of the solutions of the first mixed
problem with homogeneous boundary condition for a nonlinear
Schrodinger type evolution equation.

5. Studying blow-up of solution of the first mixed problem
with a homogeneous boundary condition for a nonlinear Ginsburg-
Landau-Schrodinger type evolution equation.

6. Calculating the exact constant in Giliardo-Nirenberg-
Sobolev inequality and obtaining a priori estimation of the exact
constant .

7. Creation of a mathematical tool for studying solvability of
the Cauchy problem and the first mixed problem with a
homogeneous boundary condition for equation (1) and the
Schrodinger-Hartry equation.

General technique of studies.

In the work, the methods of mathematical physics, theory of
ordinary differential equation, theory of function spaces, imbedding
and functional analysis theorems, theory of Fourier transform were
used.

Main provisions of dissertation.

1. The best constants in Sobolev's inequalities are calculated,
and they are applied to the study of global solvability and the
destruction of solutions of the Cauchy problem for the nonlinear
evolution Schrodinger and Schrodinger-Hartry equations.

2. The exact constants in some inequalities of modern
mathematical physics are calculated and their internal connection is
investigated.

3. A method that allows to prove the absence of global
solutions of the mixed problem for nonlinear Ginzburg-Landau and
Schrédinger type evolution equations is proposed.

4. A method that allows to prove global solvability and
destruction of solutions of the Cauchy problem for the nonlinear
Schrodinger and Schrodinger—Hartry evolution equations in the
supercritical and critical cases is proposed.

Scientific novelty.



1. A new exact integral inequality applied to the proof of
entropy inequality, was proved.

2. One generalization of entropy inequality was proved.

3. Internal relation between some fundamental inequalities of
mathematical physics, was established.

4. Exact constant in two Sobolev inequalities was calculated.

5. A priori estimations of the exact constant in one Giliardo-
Nirenberg-Sobolev inequality were obtained.

6. A new proof of the Gross-Sobolev logarithmic inequality
was offered.

7. Upper bound of the blow-up time t
S <0,a >0was estimated.

8. Sufficient conditions for global solvability of the weak
generalized solution of the first mixed problem for equation (1) were
obtained.

9. For equation (1) for p=2,g=2 the first mixed

homogeneous problem was stated and smoothness of the generalized
weak solution and its behavior as t — oo was studied.
10. For the problem (1)-(2) for =0, >0 it was proved

that it smooth solutions blow-up for p>4/n for some initial data
and lower bounds of the blow-up for u, for some initial data and

lower bounds of the blow-up rate in some norms were obtained.

11. For a system of nonlinear Schrodinger evolution
equations the Cauchy problem was stated, its global solvability and
blow-up was studied.

12. In the bounded domain, the upper bound of the best
constant in the Sobolev and Sobolev inequalities were given. These
estimations were applied to the proof of no nontrivial generalized
solutions of the first homogeneous boundary value problem for a
homogeneous Schrodinger stationary equation and eigen functions of
a spectral problem for the Laplace operators.

of problem (1) for
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13. The smoothness of the generalized solution of the first
mixed problem of equation (1) for #=0,« >0 in two-dimensional

domain and their blow-up for star domains was studied.
14. A generalized equation (1) for =0 was offered and a

homogeneous mixed problem of first kind was considered in a
bounded domain of many-dimensional Euclidean space and blow-up
of solutions of this problem was proved.

15. Blow-up and no global solutions of the mixed problem for
a nonlinear Ginsburg-Landau type evolution equation was proved.

16. A new interpolational Sobolev inequality applied to
global solvability of the Cauchy problem for the Schrodinger-Hartry
equation, was proved. Critical and supercritical cases were studied..

17. Trudinger type inequality in the unbounded domain that
was applied to problem (1), (2), for g=0, for any a=0 was
proved.

18. A sufficient condition for self-canalization of the
solutions of problem (1), (2) for =0, >0 with the nonlinear term

f([u|2)1 was obtained.

19. Global solvability and blow-up of solution of problem (1),
(2) for =0, >0 ina supercritical case were studied.

20. Blow-up of the solutions of the first mixed problem with a
homogeneous boundary condition was studied for a nonlinear
Ginsburg-Landau type evolution equation.

Theoretical and practical value of the study.

The dissertation work is of theoretical and practical character.
It develops a theory and methods for solving the Cauchy problem
and the first mixed problem for nonlinear evolution equations. The
methods of this work may be extended to the problems close by their
statement to the problem studied in the present work.

The results of the dissertation may be used in scientific
studies and when developing numerical methods for solving
mathematical physics problems..

Approbation and application.
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The main results of the work were reported at the seminars of
"Differential equations™ department of IMM of ANAS (doctor of
physics-mathematical sciences, prof. A.B.Aliyev), at the seminar of
"Mathematical analysis™ department (corr. member of ANAS, prof.
V.S.Quliyev), at the seminar of "Nonlinear analysis" department
(corr. member of ANAS, prof. B.T.Bilalov), at the seminar of
"Mathematical physics” chair of BSU (acad. of ANAS, prof.
Y.A.Mamedov), at the institute seminar of SRI "Applied
mathematics” of BSU (acad. of ANAS, prof. F.A.Aliyev).

Personal contribution of the author.

All the results obtained in the work are the personal
contribution of the author.

Publications of the author.

The main results of the work were published in 39 papers.

The name of the institution where the dissertation was
completed.

The work was performed at the Scientific Research Institute
of Applied Mathematics of Baku State University.

Volume and structure of the dissertation (in signs,
indicating the volume of each structural unit separately).

The total volume of dissertation work is 439439 characters
(title page - 425 characters, content 3537 characters, introduction -
68000 characters, first chapter - 80000 characters, second chapter -
68000 characters, third chapter - 92000 characters, fourth chapter -
78000 characters, fifth chapter - 48000 characters, conclusions -
1477 characters). The list of used literature consists of 133 items.

THE CONTENT OF THE DISSERTATION
Rationale of the topic is substantiated, review of the papers

concerning the dissertation theme is given, brief content of the work
is stated in introduction.



Chapter | of the work is devoted to the proof of some
integral inequalities and their application. This chapter consists of 6
sections.

In section 1.1 one interpolational inequality is proved and
applied to the proof of entropy inequality.

For convenience of further statement we accept the following

1/p

denotation: ful =< |u(X)]"dx; ,p=1, isthe normin L (R"),

. p ) n
Rn

in ||||p we will omit P for p=2, i.e. we will write ||| For the

given p from the interval (0,p,), where p,=+00 for
n=12,p,=4/(n—-2) for n>3, we determine « =0,50n/(p+2).

For the given o €(0,1) we determine y =+a®(@1—a)* . let
vo>0 T(0) :Te‘t 77 dt
be the Euler gamma-function; :
V3>0,7>0 B(S,7) :}tﬁ‘l(l—t)y‘ldt
0

ﬁnlz

oo

kg (@) = Z-l[o,sans(g,wﬂn -

be the Euler beta-function, o, =

2a

F‘:(n_na):| aln (3)
1 _al2 2a

2a




Lemma 1. Let p,a be above determined numbers,
v(X)eL,(R"), rvel,(R") then the following interpolational
inequality is valid:

a l-a
Mp2yipiny < ka @I @)
where k, («)- is a constant determined by formula (3).

The constant k is exact: Inequality (4) passes to the equality
for where w,,®,,®; are arbitrary positive numbers.

By means of lemma 1 we prove the following theorem

Theorem 1. Let ue L,(R"), rue L, (R") . Then the following
entropy inequality is valid:

2 2 2
B
e ul” 2| ol

Inequality (5) is exact: it passes to the equality for

2
u(x)—aexp[b J

where a,b — are arbitrary positive constant, x € R" is arbitrary.

In section 1.2 we consider one generalized entropy inequality.
Let k be any given positive number.
Let o bea given positive number such that for n—k <0 p

isany for n—k >0, p<2k/(n—k). Assume a=np/[k(p+2)], for
the given o we will determine y=/a“(1-a)"* .

Let VO>0, I'(9)= [et’*dt, be the Euler gamma-
0

(5)

o

X—X

function;

VB >0, Yy>0, B(B,y)= }tﬁ‘l(l—t)y‘ldt,
0
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the Euler beta-function; o, =27"'2/T(n/2),

n n(l a) ak/2n
k ( )__ l =
k k ke
ak/2
[etpe)”
== . . (6)
)
ka
Lemma 2. Let k,p,a be above determined numbers,
V(X)eL,(R"), r“*V(x)eL,(R"), r=|x.
Then the following integral inequality is valid:
l-«
"\/||(p+2) I(p+1) < kg (a)Hr (7)

where k() is a constant defined by formula (6). The constant
kg (a)is exact; inequality (7) passes to the equality for

V(X) =V, () = o, (@, + o,r*) 7 where w,,w,,w, are arbitrary
positive numbers
By means of lemma 2 we prove the following theorem

Theorem 2. Let ue L,(R"), r*’?ueL,(R"), vk>0.
Then the following entropy inequality is valid:

k/n 9
J|u(x)| [|u(x)| }1 n, ek[akl“(n/k)j Hrk/zuH
k

o ol ol nful”

Inequality (8) is exact, it passes t(_) the equality for

u(x) =uq(r)= aexp{ b

(8)

ol
X=X |,
- - . 0 - -
where a,b are arbitrary positive constant, x e R" is arbitrary.
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For k=2 inequality (8) passes to the known entropy
inequality.

Some remarks on fundamental Gross-Sobolev, Hirshman,
Pauli-Heizenberg-Weil inequalities and entropy inequality are stated
in section 1.3.

In this section the N dimensional analog of the Hirshman
inequality with an exact constant in it is proved. Exact constant in the
Pauli-Heisenberg-Weil inequality is calculated. Equivalence of two
forms of logarithmic Gross-Sobolev inequalities is proved and a new
proof of this inequality is found based on entropy and Hirshman
inequality. The Panli-Geizenberg-Weil inequality with an exact
constant in is proved by another two methods as well. These methods
reveal its internal relation with entropy Gross-Sobolev and Hirshman
inequalities. A new method for proving entropy inequality is offered.

Now we state the obtained results. The following propositions
are known:

Proposition 1%, Let Vf (x) e Hl(R").
The following Gross-Sobolev logarithmic inequality is valid

Al
I(f)+n[1+|n(\/7r_l)]£ﬂ,2W, )
f
where 4 >0,
Here and in the sequel Hl(R”)zwzl(R”) is a Sobolev space, [ - isa

norm in LQ(R")_

Proposition 22 Let Vf (x)eHl(R”). Then the following
logarithmic Gross-Sobolev inequality is valid:

' F.B. Weissler, Logarithmic Sobolev inequalities for the heat-diffusion semigroup,
Trans. Amer. Math. Soc., 237(1978), 255-269

2
L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97(1975), 1661-1683

12



e ( 2 Vi ] w0

en ¢

Statement 1. Inequalities (9) and (10) are equivalent: (10)
follows from (9) while (9) follows from (10).

Statement 2. Let Vf (x)eLl(R”)m L2( ”)f(é)be the
Fourier image of the function f(x):

£ 1 —ix
f(é)z(zﬂ)n/2 [e™ f (x)dx.

Then the following Hirshman inequality is valid:
I(f)+|(f)£—nln(7ze). (11)
Inequality (11) is exact: the equality in it is attained iff
f = ae ,Va>0, Vb>0,vxeR".
Statement 3. Let Vf (X)eHl( ") rf eLz( ”), r=|x.
Then the following Pauli-Heizenberg-Weil inequality is valid:

2 ~L/2
||f||SE o[22 = 2 Jrf[[*. (12)

Inequality (12) is exact; the equality in it is attained iff f isa

12
Gauss function: f =ae ", va>0, vb>0,vx eR".

Statement 4. Let Vf Hl(R”)rf e L2( ”).
Then the following entropy inequality is valid

= (Zﬂe ||||rf|||| } -

Inequality (13) is exact; the equality in it is attained in it iff

12
f isa Gauss function f =ae ™" va>0,vb>0,vxeR".
Under the weak global solution of problem (14)—(16) we
understand the following: the function ueC([0,T];H )N

13



L” ([0, T]; H}(Y)) satisfies (14)—(16) in the sense of distribution for
VT >0.

The following theorem is valid

Theorem 4. (on global existence).

A) Let g<0,p€(0,2),u, € H' (). Then problem (14)(16)

has a weak global solution.
F) Let g<0,p=2.Then assume that the initial function

u, € H*(Q) is such that for it the following condition is fulfilled
2 2
9 Juol” <ol
where y, is a radially-symmetric function, y, =y (r),r =|x,| that
is the positive solution of the following boundary value problem:

2 d
j—zl//o(r)+1ﬂ—wo+w§:0, 0<r<omo,
r

r dr
w,(0)=0,,(0) =0, w,(r) e H(R?) n C?([0,0)).
Then problem (14)—(16) has a weak global solution.
Remark 1. For g >0 problem (14)—(16) has a weak global
solution Vu, € H'(Q).
Theorem 5. Let Q<=R? pe a bounded or unbounded

domain. Let U(X) be any function from the space H'(€).
Then the following inequality is valid:

2 =T 2"
[Vul [vul

A 9" 1 m?3m-2
mam 7™ (2m-1)2mt’

where




Theorem 6. The weak solution of problem (14)-(16) is
unique.

In section 1.5 one interpolational Sobolev inequality is
proved.

Then a new proof of the logarithmic Gross-Sobolev
inequality is proved based on interpolational Sobolev inequality. The
following theorem is valid

Theorem 7. Let u(x) e HY(R"), where HY(R")=W,(R")
is a Sobolev space. Let p,a be certain numbers from section 1.1,
K 4 («) be determined by formula (3). Then the following Galiardo-
Nirenberg-Sobolev multiplicative inequality is valid

Jul,..» < Kolvul Juf™.

p+2
— p+2 . . .
Here K, =Kg(@)Kpg i1 ,where Kpg is determined in the
following way
1 1 n/2
P \e( P ) ¥
Kg(p)=||=— ,
(2 (2]
1 1

The following theorem is proved by means of theorem 6
Theorem 8. Let u(x)eH®(R"). Then the following
logarithmic Gross-Sobolev inequality is valid:

2 2 2
2
j%ln%dxsﬂln{nv—u”zj_ (18)
R Jul” ol 2 zen|u]
Inequality (18) is exact: it passes to equality for
.12
u(x) =aexp(-bjx— "),

where a,b are arbitrary positive constants, x € R"is arbitrary.
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In section 1.6 we prove one interpolational Sobolev
inequality. Then we offer one generalized logarithmic Sobolev
inequality based on interpolational Sobolev inequality

We have

Theorem 9. Let U(é) be a Fourier transform of the function
U (x)

U(ﬁ)_(z vz | [e U (xydx, £eR".
Let k,p,a be certain numbers from section 1.2,
k/
U eL,(R"), [ “U@) e L, (R").

Then the following multlpllcatlve Sobolev inequality is valid

ll,.. < Ko&“23 @[ Ju™

p+2 -

— 2 : .
Here Ko=Kg(a)KB[p+1J, where K, (a)was determined in
P+

section 1.2 by formula (6), while Ky was determined in section 1.5

by formula (17).
For k =2 from theorem 9 it follows theorem 7 from section

1.5, for k =4by the relation H |§|ZUH=||AU|| from theorem 9 we

have the following
Theorem 10. Let pe(0,00) for n<4, while for n>4

pe (0, %) a=npl[4(p+2)].

Then, let U(x)eL,(R"), AU eL,(R"). Then the following
interpolational Sobolev inequality is valid

Vll,.. < KolaU]“ U]~

Here Rong(a)KB(erzJ,
p+1

where
16



n n(l (Z) 2aln
Kgla )__{T (4' ba ﬂ ’

Kg was determined by formula (17).

Theorem 11. Let k be an arbitrary positive number. Let
U(X)eL,(R"), 4°6(&) < L (R).

Then the following logarithmic Gross-Sobolev inequality is
valid:

R ol [| ° }dx<ﬂln k[ W F( D H|§|k/2LJH1
< |

wul* \uff nz*e U

|

For k=2 from theorem 11 it fz)llows logarithmic Gross-Sobolev
inequality, while for k =4 it follows the following.
Theorem 12. Let U(x)e H 2(R”).

Then the following logarithmic Gross-Sobolev inequality is
valid:

O (F) 4[?F(D j"AU”Z
f { }dxszln

2
elul® (oI nze? |

Chapter 11 was devoted to calculation of optimal constants in
two Sobolev inequalities and their application. This chapter consists
of four sections.

In sections 2.1 we get two upper bounds of the best constant
in one interpolational Sobolev inequality and study their exactness.

For the given p from the interval (O,po), where p, =00 for
n=12, p, =4/(n—2) we determine a=05pn/(p+2). For the
best constant in the Sobolev inequality

17



ull,.. <Kol VU“ U™ , (19)

p+2
where K, is the best constant, the following estimation is valid

— p+2
Ko <Kj = Kg(a)KB(erlj.

Here K, (a) was determined by formula (3), K5 was determined by

formula (17).
Then, one more upper bound for K is given

Ko < Eo :l\/KB(p+2jKé['D+2j”G”P+2 ,
V4 2 p+1 2
-2
where y =ya”*(l-a)*, G(jx|):Kn72(]x|)/|x|nT, Ko, ((X]) is the
2 2

McDonald function, n>2.
Theorem 13. For p>2 the estimation K,<K, , for

0< p <2 the estimation K, <K, is valid.

In section 2.2 we study interrelation between optimal
constants in two Sobolev inequalities.

Theorem 14. Between optimal constant K, in Sobolev
inequality (19) and optimal constant K, in the following Sobolev
inequality

ol < Kol e
there exists the following relation
Kc :ZKO'

In section 2.3 the optimal constant K, in inequality (19) is
calculated.

Theorem 15. For the optimal constant K, in Sobolev
inequality (19) the following formula is valid:

18



a
n

Koi(lczl ’
Z\ ol

where w,(r) is the main state (positive solution from the class
c2([0,0)) Hl(R”)), with minimal norm |,|) of the following
boundary value problem:

d?yq n n-1dy,

—yo+ywft =0,
dr? rodr (20)
d
C;//ro/r=0 =0, V/O(OO)ZO'

Then inequality (19) is applied to the study of solvability of the
Cauchy problem for the nonlinear Schrodinger equation

iU, +Au=alu”u in R"xR,,
u(0, x) =ugy(x).
Here we Ry, p € R, ,uy(X) is a function given in R". We accept the
following denotation:
+2

IDu(t.)]* = Au()), Bu(®)) =2(p +2) Hu)]” .
E(u(t)) = A(u(t)) + @B (u(t)).

Let the condition on p, indicated in section 2.1. be fulfilled. By the
imbedding H*(R")cL,,,(R") the mapping u—>E(u) is a
continuous functional. Let

w<0,7=pnl4>1,1>0,d =inf sup E(u""?u(ux)), ue HY(R"),

#=0
|lul|= 4; we define the following sets

M, ={ulueH (R™), Ju| = 4, B(u) < A" (u), E(u) < d},
M =julue H (R"),Ju] =2, E@)<d, Au) > 7B(u)}
M = fulue H (R"),|u|= 4, E(u)<d, Au)<nB(u)}

(21)

19



Vi ={lue H R Ju| =4, E(u"?u(u))<d, vue[0a]}
Vy =ulueH R, Ju| =2, E(u"2u()) <d, Vu e[l =)}
where 6 = 247020y, 197" 1, s the main state of equation (20).
Statement 5.
1) The formula d = (1—7 )L/ 5]e]0)""™ is valid;
2) We have the equalities M, =M; UM,V =M, V; =M.
PtV =UV,, V- =UV,.
>0 1>0
By ¢ we will denote various constants independent of t and

u(x,t) .
Theorem 16. Let 4/n<p<p,, Where p,=4/(n-2) for

n>3(p, = for n=12). Let be above determined stability sets.
Then:

1) For u,eV™ problem (21) has a unique global solution,
u(t)eC([O,oo),Hl(R”)) and for vt [0,0) the inclusion ueV ™ is
valid. For the entropy g(t):—j|u(x,t)|2 Inju(x,t)jdx of nonlinear
Schrodinger dynamics (21) the estimation g(t)<c+clIn(@+t),
Vvt €[0,0) is valid.
2) Let ueV ", ru, e L,(R"). Then problem (21) has no solution
u(t)ec([o,T),Hl(R“)) on the whole, i.e. for VT >0.

Theorem 17. Let p=4/n,w<0.

Let u, e H'(R"), ru, € L,(R") and for the initial function

Uo(x) the condition |a)|”/2||u0||<||z//0||, be fulfilled, where y, is the

main state of equation (20). Then problem (21) has a unique solution
u(t) eC([O,oo), Hl(R”)) on the whole and for this solution for
Vvt €[0,) the following estimation is valid.

-n/n+2 -n/(n+2)
c(l+t) < ||u(t)||(2n+4)/n <c(l+t) :

20



c+cin(l+t) <e(t) <c+cin@+t).

Remark 2. For n=1 equation (20) is solved exactly, namely:
wo =[(0+1)16]”? Ich?(x16),6=2/p, by the some token

lwo|” =22 *[(0+1)/6) B(6,6), where B(6,6)-is Eulers beta-
function.

In section 2.4 we obtained some sufficient conditions for no
nontrivial generalized solutions of Dirichlet's internal problem with a
homogeneous Schrodinger type equation. To this end, we established
some upper bounds of the exact constant in the known Sobolev space
in an unbounded domain, and also in the known Steklov inequality.

Let QcR" be an arbitrary bounded open domain with the
boundary 6QcC**, 0<u<1.

We consider the Dirichlet problem for the Schrodinger
operator A +q(x)

Au+q(x)u=0 ¢ Q,

u=0 wna GQ, (22)

n 2

where A:Za—z, q(x) is a function given in Q. We will
i=1 i

consider problem (22) in the following generalized sense.

0
Definition 1. The function u(x)eW,(Q) is a generalized
solution of problem (22), if it satisfies the integral idently

£ {—Zag—ix) a‘fT(x) n q(x)u(x)w(x)}dh 0

0
for any function w(x) eW, (Q).
We accept the following denotation: For the given p from

the interval (0, p,), Where p, =0 for n=12, p, =i2 for n>3,
n_

pn

we determine o =0,5 )
p+2
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p+2

P+1) \where K, (r) was determined
by formula (3), Kz was determined by formula (17). Then,
K (@ a) = K@), | = mesQ

The following theorems are valid.
Theorem 18. Let p be above determined number,

Assume

G(x) #const _pe 4 function given in © for the class L1, ()
Then let

: Vv %
A=inf J(v), J(v)= W, v e W, (Q) /{0}.
p+2
Let 9() pe such that

2
||q||(p+2)/p <A (23)

Then problem (22) has no nontrivial generallzed solution in the class

Wzl(Q).
Theorem 19. Let p and & be above determined numbers,

q(x) #const pa 4 function in © from the class L o210 (€2) Let

A4(X) pe such that for the norm 6l o231, the following condition be
fulfilled

2
||q||(p+2)/p <AL : (24)

1
here Ax=—
kC
Then problem (22) has no nontrivial generalized solution in

0
the class W, ().
Remark 3. Compared to condition (24) condition (23) is

more exact as A < It is clear that condition (24) is more practical
22



from the point of view of calculation than condition (23). In

q =max(0,q(X))1 we get the best estimation. It is clear that if

A <0 g in Q| then problem (22) has no solution in the class
0

W, ().
When proving theorems 18 and 19 we use the following
theorem.

Theorem 20. Let P be the above determined number, v(X)
0

be any function from the class W, (€2).
Then the following Sobolev inequality is valid:
M .2 <KelV -

Chapter 111 is devoted to solvability of problem for nonlinear
evolutional Schrodinger equations and blow-up, self canalization of
their solutions. This chapter consists of six sections.

In 3.1 a mixed problem is considered for Schrodingers
evolutional cubic equation with a cubic dissipative term.

Let Q< R? be a bounded or unbounded domain with smooth
boundary oQ.
We consider the following mixed problem:

q*
theorems 18 and 19 if we substitute ”q”(P*Z)’ » by H (p+21p where

igt—u+iﬂ|u|2u:Au +a|u|2u, XxeQ,t>0, (25)
Ulo=Uo(X), xeQ, (26)
u=0, na 0Q, t=>0. (27)

Here {a,f}<R' are the parameters of equation (25), u, is a

function givenin Q.
0

Assume H = L,(;C); Hy =W, (;C),
H? = W22 (Q;C) -are Sobolev’s Hilbert spaces; B=H? nHj.
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Let W,(r), r=|x be a positive monotonically decreasing

function from the class C?[0,0) with the finite norm o/ ,2 . that is

a unique solution (main state) of the following nonlinear boundary
value problem

‘I’é’(r)+%‘1’5(r)—‘1’o(r)+‘Po3(r) =0,0<r<om, 28)
W,(0) =0, ¥,()=0.
We have the following theorem on global solvability of
problem (25)-(27).
Theorem 21. Let >0, a,uy € B be such that one of the

following conditions be fulfilled (ex— 34 )uo|’ <P, k =12,

where
271

P :”‘//0”2 P 271
¥, is the main state of problem (28). For ¢ <0 u, any of B. Then
problem (25)-(27) has a global strong solutions and this solution is
unique, u(x,t) is from the class C°([0,o0); B)~ C*([0,00); H).
In section 3.2 we consider global solvability and
smoothness, asymptotics as t — oo of the mixed problem

iu, +i8u"u=Au+alu’u, (xt)eQ=Gx[0,T]; (29)
u_, =0 S=0Gx[0T]; (30)
u(x,0)=up(x), xeG. (31)

Here G is an arbitrary bounded domain of ndimensional domain R"
with a smooth boundary, S eR,,xeR, q,peR,,U, is a function

givenin R".

We have the following theorem

Theorem 22. Let >0,p>0,0>0,a<0 (for >0 we
additionally assume that q> p). Let u, e H*(G)~L,,,(G) where
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v=max( p,q). Then there exists a unique solution of problem (29)-
(31) such that

ue LO{O,T; r; 'G)nL,,, (G)] N Ly,q2(Q),

u, € Lw[O,T; H'G)+L,,, (G)J.
vl
In section 3.3 we consider self-canalization of the solutions of
a nonlinear evolution Schrodinger equation.
Let for the nonlinear Schrodinger evolution equation the

Cauchy problem be posed:

igt—u:Au+fQu|2)u in R"xR,, (32)
ul_, =Up(x) in R". (33)

Here f(s) is a function given on [0,0) U, is a function given in R".

We well accept standard denotation :

H(R")=L*(R"), H*(R") =W, (R")are complex Hilbert
spaces of Sobolev; || is a norm in L,(R"), HHp is a norm in
L,(R"), p=1.

Put

A®t) = AQu(D)) = [Vu(, D,

E(t) = E(u(t)) = A(t) - B(t), where B(t) = [F(u(xt)|*)dx,
Rn

where F(s)= | f(2)dz; a®) = au(®) =JuG-0f%
0
P (1) = Py (u(t)) = . j(ua—u—GS—u]dx, 121

!
2
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Definition 2. We say that the global solution u(x,t) of
problem (32), (33) from the class
C°([0,+0) H(R™)) N C*([0,+0); H *(R™))
is self-canalized if for Vvt [0,+o0) the following bilateral estimation
is fulfilled for it: const < |Ju(-t)[, <const, where const denotes

various positive constants independent of t and u(x,t).

The following theorems are valid.

Theorem 23. (on global existence).

Let u, e HY(R"), £(0)=0, f(s) eC?([0;)) on the interval
[0;+0)be a positive increasing, downwards convex function, i.e.
f(s)>0, f'(s)>0, f"'(s) <0 Vs e[0,+x).

Then for n=1 problem (32), (33) has a global solution from
the class

C°([0,+0), HY(R™) N C*([0,+0); H *(R")).
For n = 2the said one remains valid subject to the condition
2772

Theorem 24. (on self- canallzatlon).

Let all the conditions of theorem 23 be fulfilled. Let the initial
function U, be such that the following inequality be fulfilled:

PZ(UO)
)

E(uo) < a(ug

problem (32), (33) is self-canalized.
In section 3.4 we consider the Cauchy problem for a cubic
evolution Schrodinger equation:

i%ltJ:Au+|u|2u in RxR,, (34)

n
,where PZ(u,) = Y. PZ(up). Then the solution of
k=1

Ul_o=Uy in RZ. (35)

It is proved that under some initial data the solution of problem (34),
(35) blows-up after some finite time whose exact value is estimated
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from above.
In section 3.5 we consider the Cauchy problem for a
nonlinear evolution Schrodinger equation:

igt—u:Au+|u|pu, xeR", t>0, (36)
u(x,0)=u,(x) in R" (37)

Here p >0, n<3, uy(x)is a function given in R".

It is proved that for ©=4/n and some initial data the
solutions of problems (36), (37) blow-up after finite time whose
value is estimated from above. Furthermore, the lower bounds of
blow-up rate of solutions were obtained in some norms.

In section 3.6 we consider a global existence, asymptotics as
t — oo and blow-up of the solution of the problem

iu, +Au=kf(u b in R"xR,,
u(0,x) = ug (x);
here k € R, u, is a function given in R".

Chapter 1V was devoted to no global solutions of the first
mixed problem for a nonlinear Ginsburg-Landau-Schrodinger type
evolution equation, solvability and blow-up solutions of the Cauchy
problem for a system of nonlinear Schrodinger evolution equations.
This chapter consists of 5 sections.

Section 4.1 studied no global solutions of a mixed problem
for a nonlinear Schrodinger type evolution equation. Let QQ < R" —
be an arbitrary bounded domain with a smooth boundary. Consider
that following mixed problem:

U, =ifAu + f(u,Vu), xeQ, t>0, (38)
u(x,0)=u,(x), xeQ, u(xt) =0, t=0, (39)
in which
(U, Vu)= U7 +a, VU (40)
where w, 20,0, 20, of +w? #0,y>0,14>0,3#0.
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It was proved that for “rather large” values of initial data
problem (38)-(40) has no global solutions.

In section 4.2 blow-up of solutions of the first mixed problem
for a class of nonlinear Ginsburg-Landau-Schrodinger evolution
equation is studied..

Let Q< R" be a bounded domain with smooth boundary
0Q2. Consider the following mixed problem:
U, = (@ +ip)Au+ f(u)+ (7 +iu)u,

(41)

xeQ, t>0,
u(x,0) =uy(x), xeQ, (42)
u(xt)., =0, t=0. (43)

Here f (u) = (a)+i}/)|u|1+p,{a,,8,a),;/,77,y}e R,peR,,
o’ +ﬂ2 #0, a)2+)/2 #0.

It was proved that the solutions of problem (41)-(43) under
"large values" of initial data blow-up after finite time estimated from
above.

In section 4.3 no global solutions of the first mixed problen is
studied for a nonlinear Ginsburg-Landau type evolution equation.

Let Q< R"be an arbitrary bounded domain with a smooth
boundary. Consider the following mixed problem:

U, = (@ +if)Au+ f(u,vu), xeQt >0,

u(x,0)=uy(x)x € Q, u(x,t)/ ;o =0,t >0,

here
f(u, Vu)= @yu[*” + a,|[vu[**
where @, 0,0, >0, @’ +w? #0,y >0,u>0,8%0,a €R.
It was proved that for "rather large initial data" the problem
under consideration has no global solutions.
In section 4.4 we consider a mixed problem for a nonlinear
Schrodinger evolution equation in two-dimensional domain. Let
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Q — R? be a bounded domain with a rather smooth boundary T.
Consider the following mixed problem:

izt—u:Au+|u|pu,XEQ,t>O, (44)
u(x,t)=0, xeT, t>0, (45)
u(x,0)=uy(x), xe Q. (46)

Here p >0, Uy(x) is a function given on Q. For problem (44)-(46)

we study smoothness of solutions and their blow-up in the starry
domain Q.

Problem (44)-(46) has a global solution in the space of
functions

u(x,t)e C[[o, o WEHQ)NW2 (Q)j Nc([0,); L, ()

for p <2 for any

u(x) e W (@)W ().
In the case of p =2 what has been said remains valid for
Juol* <Z2%.
8

Then, for p>2 a set of initial data u, is selected from the

space W2(Q) W2 (Q) whose solution of the problem under
consideration blows up for finite time t,,, estimated from above.
More exactly, let the initial function uy(x) be such that
2
p+2

p+2

E, =||Vu0||2 —~ ||uo|p+2 <0, then the solution of the problem

(44)-(46)
U(X,t) € (([O,tmax);Wzl(Q)ﬂWZZ (Q))ﬂ Cl([oitmax); I-2 (Q)

blows up after finite time t,,, estimated from above by a certain

number dependent on u,(x) for a star domain.
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The domain Q is called a star domain if the ray outgoing
from any internal point of the domain Q intersects its boundary 0Q
at one point.

In section 4.5 we consider global existence, behavior as
t—+00 and blow-up of the solution of the Cauchy problem for a
system of nonlinear Schrodinger evolution equations

. o0uy _

1— + 6,Au, = 7,U,U,,

at AU = 7UoUs
. OU, .
IE+6’2AU2=72U1U3,IH R XR+, (47)

. OUg
I— +6,Au, = ¥,U,U,,
at 3AUz = y3UU,

U, (0,t) =uy, (x), xeR", m=123. (48)

Here u(x,t) = (u;(x,t),u,(x,t),us(x,t)) is a known complex
valued vector function; Uy, (X),m=12,3 are the functions given in
R"; 6,,7,,Mm=123 are the given nonzero real constants
(parameters of equation (47)), i.e. 6,7, €R'\{0},m=12,3; the
dash over U, (X,t) means complex conjugation of u_(X,t).

Further we will suppose that the parameters
6, 7m,M=123, of equation (47) satisfy the conditions

Y Y (50)
|a’1| |“’2| |‘03|

where o, O e sign(@,,7,, ) = const,m =1,2,3.
m
The following theorem is valid
Theorem 25. (on global solvability). Let the parameters of
equation (47) satisfy conditions (49), (50) and n<4.
Let u,, e H, m=123.
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Then problem (47), (48) has a unique global solution such
that

Up (1) € CO([0+00) HY ) CH{[0, 400 H ), m=1,23.

Chapter V was devoted to solvability and blow-up of the
solution of the Cauchy problem for a nonlinear Schrodinger-Hartry
evolution equation. This chapter consists of three sections.

In section 5.1 one interpolation inequality containing a
convolution was proved. The following theorem is valid.

Theorem 26. Let 0< A <min(4,n),vV (x) e H*(R"), then
the following interpolation inequality is valid:

o) <Ko |" V[ (52)

here

Q)= | JMN:% y, 0=%

RN (N |X y

Ko :ﬂKwKsl

A

< _ﬁ%r(nlz—mz)r(n/z) n
- T(n—A/2)C(n)

n

4 g 272

Kw =24 (0,B12) ’Gn_l“( n/2)’

B= B[g n(lzae)) is a beta-function, T'(-)-is Euler gamma-

function y, =+0°1-60)"7;
n
2

1 1
, pYe( P\ 4n , 4n
K ) = - - ) = ) = .
s(P.P) (272’] (mj P=on=2 P onea

We study calculation of the exact constant in inequality (51).
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Let O0<A<min(4,n),vVl= % V(x) e HY(R"). Consider the
functional

PV 'V -

{ov)
and its minimization along the space H*(R"),V =0. Since the
mapping R, (V) — R, is continuous and the functional R,(V) is

lower bounded by inequality (51), consequently there exists
infimum. Assume

KizAzinf{Ro(v)weHl,v -0}, (53)

0
Let W, be a subspace of H*(R"), consisting of the functions
V(x) e H*(R"), dependent only on r, positive and decreasing

monotonically tend to zero I — +oo. The following theorem is valid.
Theorem 27. Let
A

0< A <min(4,n), ve:z, vV (x) e HY(RM).
Then let R,(V) be determined by relation (52), K, by
relation (53). Then:
1) The functional R,(V) achieves its infimum on the function
w,(r) eW, nC?[0,o0], that is the positive solution of the following
nonlinear boundary value problem:

n-1

2
. . d
Yo+ r Vo=Wo =V vo(6)ds

0 )
x—g’ (54)
¥o(0)=0, yy(+0)=0;
2) For the solution y,(r) eW. nC?[0,0) of problem (54) the
following relation is valid
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”V’o ”
1-6 C

CBZKB( 2n | 2n jKé( 4n | 4n j
2n—A4 2n+ A 2n+A4 2n—-A

G(r) = K(nfz)/z(r) 2,

p(-2)/2

[Vwol” = Qo) = LK EEn

where

K22 -1s McDonald's function, G(r)-is a kernel of the integral

operator (I —A)™, for which for n>2 there exist various integral
representations, including the above used. As is known, for n=13
G(r)is expressed by the elementary functions;

3) The optimal constant K, is determined by the formula

1
1[1 9]
ol
4) The equality in interpolational inequality (51) holds iff
\% =7l//o(ﬁ|x—ﬂ|), y>0, BeR —{0},uecR".

In section 5.2 we consider a Cauchy problem for a nonlinear
Schrodinger-Hartry evolution equation:

iu +Au=af (u)u s R"xR,, (55)
ul_,=u () & R", (56)

here
Fu) = []x—y "Juty.0]"dy, (57)

where @, A are real positive numbers (parameters of equation (55)),
U, isa functions givenin R".
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Denotation. H :=L,(R"), H' :W,(R")is Sobolev's Hilbert
space H™ = (H")"is a conjugated space of H?; Hy = {vlveH;
rveH, where r=|x;VveH};|{is anormin H, ||||p is a norm

in L,(R"), p=L[}{| isanormin H*, pe(0,0,), 0, =00 for

n=12, p, =$,n23 a=05m/(2+p), O=2114, n=4l2,

A, =min(4,n); Q(t)=%ﬂ|x— v ulx ) u(y, ) dxdy.

Under repulsive interaction, i.e. for @ >0the following
theorem is proved.
Theorem 28. (on global solvability and damping).

Let ®>0,0<A< 4, u,e HZ .Then problem (55)-(57)
has a unique global solution CO([O,oo); HZ )and for vt €[0,00) the

following estimations are valid:

1)  for Vn:ic(l+t)* <Q(t) <c@+1t)™;

2) for n>3, 2<A<A,:cl+t)“< ||u(t)||p+2 <c(l+t)™,
), <c@+t)™“? vQcR", mesQ < +oo;

3) for 0<2<min(2n):c(L+t) <[u(t) , <clL+t)™”,
JuC.t), < c(L+1)™”) v R", mesQ < +oo.

4) Qr(®) = c+t) ™, Ju(.t)
5) Oy 26 TGOy >

6) ti%r:o\_t“”u(',t) wqu\gm)J 2 ¢, tE—T)OLta||U("t)”wz(mg\x\gmJ =

) imfrQ®] ze lim [FQu . ]2¢

t—+o0 t—+o0

ey 2 SO

Here and in the sequel, by ¢ we will denote various positive constants
independent of t,u(x,t), but dependent only in uy,|e],4,n; in
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definition of Qg (1), Qg (1).Qr,r, (1) - integration with respect to X
and Y in the integral mx—y|’i|u(x,t)|2|u(y,t)|2dxdy is conducted in
domains:

Q. ={{x, yleR", [x|<R,|y|< R}, Qp =QgcR=R =ct,

Qp o =X Y} eR" R <X <Ry, R <[y <R, R =Ct,R, =ct}

Consider the case @ < 0, i.e. the attractive interaction. The

following theorem is valid.
Theorem 29. (on global solvability).

Let w<0, 0<A<min(2,n),u, eH". Then problem (55)-(57)
has a unique global solution u(x,t) in the class of function
C°([0,0); HY).

In section 5.3 we study the Cauchy problem for a nonlinear
Schrodinger Hartry evolution equation in the critical case

iU, +Au=af(u)u in R"xR,, (58)
ul,_, =Up(x) in R", (59)

here
ful)=x=y " Juty. 0 oy, (60)

where @ e R \{0}, 1 is a real positive number u,is a function given
inR".

Problem (58)-(60) is studied in critical value of the parameter
A=2 inthecase w<0,n>3.

Denotation. H':=W,(R")is Sobolev's Hilbert space,
H?'=(HY)" is a space conjugated to H'; Hy ={v|veL,R");
rvel,(R"), where r=[x;vwel,(R)}; || is a norm in
LZ(R”),||-||p isanormin L,(R"), pZLHHH isanormin H.

Definition 3. We will call the stationary solutions of equation
(58) for w<0 with a nonlinear term (60) the solution of the form

35



u(x,t) =e*'y(x), where k eR,,w(x) (a real function) is the solution

from the class H'of the following problem:
Ay —ky = oy [|x—y w(y)'dy, xeR",
w(x)—>0 for |X| —> o0, (61)
Definition 4. We will denote positive radially-symmetric
(n>2) solution of problem (61) w(r) from the class C?([0,)) with
finite norm |y (r)]| by w,(r)and call the main state.

For the state w, of equation (61) for k=1L, w=-1,1=2,n>3
the following relation is valid:

wo (¥ [wo(Y)
fIvwolac-Lgle § i s ety = ol
Determine for Wv(x) e H*(R") the functional
|v(x)| |v(y)|
-y

= |ve H (R") K0}, R(v) =0}
The following lemma is valid
Lemma 3. Let w,(X) be the main state of equation (61) for

k=Lw=-1L1=2,n>3. Then,
S(y,)=minS(v), where S(v):ﬂVv(x]zdx.
veM

In the critical case the following theorems were proved.
w=-1.

R(v)=| |Vv|2 dx — jj'

and the set

Without loss of generality in the sequel we will assume
Theorem 30. Let

A=2,n=3 w=-1 A=2,n>3 Uy, eH'(RM\{0}, ru, eL,(R")
and satisfy the condition E(u,) <O0.
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Then the solution u(t) of problem (58)-(60) blow-up after
finite time t,,, upper bounded by a certain number dependent on the
initial function uy.

Theorem 31. Let A=2 n>3w=-1 Vu,cH'(R")
satisfy the condition

|U0(X)| |Uo(y)|
=y

a) if u, satisfies the condition R(u,)<0 and ru, € L>(R"),
then the solution u(t) of problem (58)-(60) blows-up after finite time
tmax » Upper bounded by some number dependent on u,;

b) if

J(uy) = j|VuO|2dx+j|uO|2dx ﬂ dxdy < S(w,).

Then :

R(u,y) >0,
then the solution of problem (58)-(60) globally exists:
u(x,t) e C([0,0); H*(R™)) N C*([0, ); H *(R™)).
Theorem 32. Let A=2, n>3w=-1 Vu, eH'(R")
satisfy the conditions

2 1 uo () Juo ()
Eo = [[Vuy| dX_EH 0 2" dxdy > 0.
x—y

J(Ug) <S(wy)-
Then the solution u(t) of problem (58)-(60) globally exists,

u(t) € C([0,%); H*(R™) N C([0,0); H *(R™))
IVu@)|| <[Vl Wtel0,).
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CONCLUSIONS

The dissertation work is devoted to studying global
solvability and blow up of solutions of the Cauchy problem and also
a mixed problem for some Schrodinger Ginsburg-Landau and
Schrodinger Hartry nonlinear evolution equations. To this end, some
exact integral inequalities are proved, the best constant is calculated
and its estimation in one interpolational Sobolev inequality is given.

In the work the following results are obtained:

1. New exact integral inequalities applied to the proof of the
entropy inequality, are proved. The entropy inequality is generalized.
The Trudinger type inequality that is applicable to Schrodinger
nonlinear evolution equation is proved for unbounded domains.
Exact constants in some inequalities of mathematical physics are
calculated.

2. The exact constants are calculated and their estimates are
given in some Sobolev inequalities that are aplicable to the proof of
solvability of Schrodinger equations.

3. Sufficient conditions for solvability, blow-up and self-
canalization of the solution of the Cauchy problem, and also a mixed
problem for some nonlinear Schrodinger evolution equations are
obtained.

4, Sufficient conditions of no global solutions are obtained a
mixed problem for Schrodinger and also Ginsburg-Landau type
nonlinear evolution equation.

5. The global solvability and blow-up solutions of the Cauchy
problem is studied for a system of Schrodinger evolution equations
with quadratic nonlinearity.
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6. Global solvability and blow-up, damping of the solutions of
the Cauchy problem is studied for Schrodinger-Hartry evolution
equation in critical and supercritical cases.
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