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GENERAL CHARACTERISTICS OF THIS WORK 

 

 Rationale of the work.  

The mathematical model of the processes of light wave 

propagation in nonlinear media is a Cauchy problem for the 

nonlinear Schrodinger equation: 

 uuuuui
t
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pq
 




  in    RRn ,                  (1) 

 xuu t 00/  ,                           (2) 

where  0,0,0,0,0 upq  is a function given in nR . For 

equation (1) we set a mixed problem as well. 

 For 0  the problem (1)-(2) is studied very intensively in 

the scientific literature. For 0  quite a lot of works were devoted 

to different properties of problem (1)-(2). The papers of Jiber A.V., 

Shabat A.G., Kudryashev O.I., Sakbayeva V.J., Jidkova P.E.,  

Gilassey R.T., Merle F., Tsutsumi S., Tsvetkov N., Strauss W., Nawa 

H., Cazenave T., Weissler F.B. and other were devoted to blow up of 

solutions of problem (1)-(2) for 0,0   . Local solvability of 

problem (1)-(2) for 0  in various function spaces were studied in 

the papers of Ginibre J. and Velo G., Baillon J.B., Gazenave T., 

Figueiza, Shabat A.B. and others. 

 Solvability of the first mixed problem with a homogeneous 

boundary condition for the equation for 0,0    was studied by 

Lions J.L. for  0,0    by Vladimirov M.V. and others.  

 It should be noted that solvability of problem (1)-(2) for

0,0   in the supercritical case are unknown to the author in the 

scientific literature. The blow up rate of the solutions of problem (1)-

(2) for  in critical and supercritical cases in the scientific 

literature, the author is unknown. 

 In the papers of Vladimirov M.V., the first mixed problem 

with a homogeneous boundary condition for equation (1) was studied 

without determining the sign of the parameter   and the behavior of 

0,0  
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solution as was not researched. Then global solvability of the 

Cauchy problem for the Schrodinger-Hartry equation was not studied 

in critical and supercritical cases.  

In scientific literature there is no studies on self-canalization 

of the solutions of problem (1)-(2) for 0,0    with a nonlinear 

term of the form 
 

instead of 
 

under appropriate 

conditions on the function  .  

 When solving global solvability of problem (1)-(2) for 

0,0   in supercritical and critical cases there arises a problem 

of determination of the best constant and its estimation in Giliardo-

Nirenberg-Sobolev inequality.  

 Proceeding from these arguments, we can conclude that the 

topic of the dissertation work was devoted to solvability, blow-up, 

self-canalization and behavior of solution as t  of the 

Schrodinger, Schrodinger-Hartry and Ginzburg-Landau evolution 

equation and creation of appropriate mathematical tool is urgent and 

is of great interest both from theoretical and practical point of view.  

 Object and subject of research.  

The main object of the dissertation work is the calculation of 

optimal constants in Sobolev inequalities and their application to 

Schrödinger, Schrödinger-Hartry and Ginzburg-Landau nonlinear 

evolution equations. 

 The goal and objectives of the study.  

The goal of the work is in solving the following main 

problems.  

 1. Studying solvability, blow-up, behavior as t  of the 

solutions of problem (1)-(2). 

 2. Studying solvability, blow-up of the solutions of the first 

boundary value problem with a homogeneous boundary condition for 

equation (1). 

 3. Studying solvability and blow-up solutions of the Cauchy 

problem for the Schrodinger –Hartry equation. 

t
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 4. Studying blow-up of the solutions of the first mixed 

problem with homogeneous boundary condition for a nonlinear 

Schrodinger type evolution equation.  

 5. Studying blow-up of solution of the first mixed problem 

with a homogeneous boundary condition for a nonlinear Ginsburg-

Landau-Schrodinger type evolution equation. 

 6. Calculating the exact constant in Giliardo-Nirenberg-

Sobolev inequality and obtaining a priori estimation of the exact 

constant . 

 7. Creation of a mathematical tool for studying solvability of 

the Cauchy problem and the first mixed problem with a 

homogeneous boundary condition for equation (1) and the 

Schrodinger-Hartry equation. 

 General technique of studies.  

In the work, the methods of mathematical physics, theory of 

ordinary differential equation, theory of function spaces, imbedding 

and functional analysis theorems, theory of Fourier transform were 

used.  

 Main provisions of dissertation.  

 1. The best constants in Sobolev's inequalities are calculated, 

and they are applied to the study of global solvability and the 

destruction of solutions of the Cauchy problem for the nonlinear 

evolution Schrodinger and Schrodinger-Hartry equations. 

 2. The exact constants in some inequalities of modern 

mathematical physics are calculated and their internal connection is 

investigated. 

 3. A method that allows to prove the absence of global 

solutions of  the mixed problem for nonlinear Ginzburg-Landau and 

Schrödinger type  evolution equations  is proposed. 

 4. A method that allows to prove global solvability and 

destruction of solutions of the Cauchy problem for the nonlinear 

Schrodinger and Schrodinger–Hartry evolution equations in the 

supercritical and critical cases is proposed. 

 Scientific novelty.  
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 1. A new exact integral inequality applied to the proof of 

entropy inequality, was proved.  

 2. One generalization of entropy inequality was proved. 

 3. Internal relation between some fundamental inequalities of 

mathematical physics, was established. 

 4. Exact constant in two Sobolev inequalities was calculated. 

 5. A priori estimations of the exact constant in one Giliardo-

Nirenberg-Sobolev inequality were obtained. 

 6. A new proof of the Gross-Sobolev logarithmic inequality 

was offered.  

 7. Upper bound of the blow-up time  maxt of problem (1) for 

was estimated. 

 8. Sufficient conditions for global solvability of the weak 

generalized solution of the first mixed problem for equation  (1) were 

obtained. 

 9. For equation (1) for 2,2  qp  the first mixed 

homogeneous problem was stated and smoothness of the generalized 

weak solution and its behavior as  t  was studied. 

 10. For the problem (1)-(2) for 0,0    it was proved 

that it smooth solutions blow-up for np /4  for some initial data 

and lower bounds of the blow-up for 
0

u  for some initial data and 

lower bounds of the blow-up rate in some norms were obtained. 

 11. For a system of nonlinear Schrodinger evolution 

equations the Cauchy problem was stated, its global solvability and 

blow-up was studied.  

 12. In the bounded domain, the upper bound of the best 

constant in the Sobolev and Sobolev inequalities were given. These 

estimations were applied to the proof of no nontrivial generalized 

solutions of the first homogeneous boundary value problem for a 

homogeneous Schrodinger stationary equation and eigen functions of 

a spectral problem for the Laplace operators.  

0,0  
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 13. The smoothness of the generalized solution of the first 

mixed problem of equation (1) for 0,0    in two-dimensional 

domain and their blow-up for star domains was studied. 

 14. A generalized equation (1) for 0  was offered and a  

homogeneous mixed problem of first kind was considered in a 

bounded domain of many-dimensional Euclidean space and blow-up 

of solutions of this problem was proved. 

 15. Blow-up and no global solutions of the mixed problem for 

a nonlinear Ginsburg-Landau type evolution equation was proved.  

 16. A new interpolational Sobolev inequality applied to 

global solvability of the Cauchy problem for the Schrodinger-Hartry 

equation, was proved. Critical and supercritical cases were studied.. 

 17. Trudinger type inequality in the unbounded domain that 

was applied to problem  (1), (2), for 0 , for any 0  was 

proved.  

 18. A sufficient condition for self-canalization of the 

solutions of problem (1), (2) for 0,0    with the nonlinear term   

 uuf
2

 was obtained. 

 19. Global solvability and blow-up of solution of problem (1), 

(2) for 0,0    in a supercritical case were studied.  

 20. Blow-up of the solutions of the first mixed problem with a 

homogeneous boundary condition was studied for a nonlinear 

Ginsburg-Landau type evolution equation.  

 Theoretical and practical value of the study.  

The dissertation work is of theoretical and practical character. 

It develops a theory and methods for solving the Cauchy problem 

and the first mixed problem for nonlinear evolution equations. The 

methods of this work may be extended to the problems close by their 

statement to the problem studied in the present work. 

 The results of the dissertation may be used in scientific 

studies and when developing numerical methods for solving 

mathematical physics problems.. 

 Approbation and  application.  
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The main results of the work were reported at the seminars of 

"Differential equations" department of IMM of ANAS (doctor of 

physics-mathematical sciences, prof. A.B.Aliyev), at the seminar of 

"Mathematical analysis" department (corr. member of ANAS, prof. 

V.S.Quliyev), at the seminar of "Nonlinear analysis" department 

(corr. member of ANAS, prof. B.T.Bilalov), at the seminar of 

"Mathematical physics" chair of BSU (acad. of ANAS, prof. 

Y.A.Mamedov), at the institute seminar of SRI "Applied 

mathematics" of BSU (acad. of ANAS, prof. F.A.Aliyev).  

 Personal contribution of the author.  
All the results obtained in the work are the personal 

contribution of the author. 

 Publications of the author. 

The main results of the work were published in 39  papers. 

 The name of the institution where the dissertation was 

completed.  
The work was performed at the Scientific Research Institute 

of Applied Mathematics of Baku State University. 

 Volume and structure of the dissertation (in signs, 

indicating the volume of each structural unit separately).  

The total volume of dissertation work is 439439 characters 

(title page - 425 characters, content 3537 characters, introduction - 

68000 characters, first chapter - 80000 characters, second chapter - 

68000 characters, third  chapter - 92000 characters, fourth  chapter - 

78000 characters, fifth  chapter - 48000 characters, conclusions - 

1477 characters). The list of used literature consists of 133 items. 

 

 

THE CONTENT OF THE DISSERTATION 

 

 Rationale of the topic is substantiated, review of the papers 

concerning the dissertation theme is given, brief content of the work 

is stated in introduction. 
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 Chapter I of the work is devoted to the proof of some 

integral inequalities and their application. This chapter consists of 6 

sections. 

 In section 1.1 one interpolational inequality is proved and 

applied to the proof of entropy inequality.  

For convenience of further statement we accept the following 

denotation:  ,1,)(

/1
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  we will omit  p  for ,2p  i.e. we will write .   For the 

given   from the interval ),,0( 0  where 0  for 

)2/(4,2,1 0  nn   for ,3n  we determine ).2/(5,0   n  
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Lemma 1. Let ,  be above determined numbers, 

),()( 2
nRLx   )(2

nRLr   then the following interpolational 

inequality is valid: 

,)(
1

)1/()2(









 rkg

              
(4) 

where )(gk - is a constant determined by formula (3). 

The constant gk  is exact: Inequality (4) passes to the equality 

for  where 321 ,,   are arbitrary positive numbers. 

 By means of lemma 1 we prove the following theorem 

Theorem 1. Let )(),( 22
nn RLruRLu  . Then the following 

entropy inequality is valid: 
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Inequality (5) is exact: it passes to the equality for 

,exp)(
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where  ba,  are arbitrary positive constant, nRx


 is arbitrary. 

 In section 1.2 we consider one generalized entropy inequality. 

Let k  be any given positive number.  

Let     be a given positive number such that for 0 kn   

is any for 0 kn , )/(2 knk  . Assume )]2(/[   kn , for 

the given   we will determine    1)1( .  

Let 



0

1)(,0 dtte t  , be the Euler gamma-

function;  


 

1

0

11 )1(),(,0,0 dtttB  , 



11 
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 Lemma 2. Let ,,k  be above determined numbers, 

),()( 2
nRLxV  xrRLxVr nk  ),()( 2

2/
.  

Then the following integral inequality is valid:  
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where )(gk  is a constant defined by formula (6). The constant  

)(gk is exact; inequality (7) passes to the equality for 

 /11
3210 )/()()(  krrVxV , where 321 ,,   are arbitrary 

positive numbers 

 By means of lemma 2 we prove the following theorem 

Theorem 2. Let )(),( 2
2/
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Then the following entropy inequality is valid: 
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Inequality  (8) is exact, it passes to the equality for 
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 For 2k  inequality (8) passes to the known entropy 

inequality. 

 Some remarks on fundamental Gross-Sobolev, Hirshman, 

Pauli-Heizenberg-Weil inequalities and entropy inequality are stated 

in section 1.3. 

 In this section the n  dimensional analog of the Hirshman 

inequality with an exact constant in it is proved. Exact constant in the 

Pauli-Heisenberg-Weil inequality is calculated. Equivalence of two 

forms of logarithmic Gross-Sobolev inequalities is proved and a new 

proof of this inequality is found based on entropy and Hirshman 

inequality. The Panli-Geizenberg-Weil inequality with an exact 

constant in is proved by another two methods as well. These methods 

reveal its internal relation with entropy Gross-Sobolev and Hirshman 

inequalities. A new method for proving entropy inequality is offered. 

 Now we state the obtained results. The following propositions 

are known: 

 Proposition 1
1
. Let   nHxf R1)(  .  

The  following Gross-Sobolev logarithmic inequality is valid 

   ,ln1)(
2

2

2

f

f
nfI


                                (9) 

where ,0   

Here and in the sequel    nn WH RR 1
2

1   is a Sobolev space,   is a 

norm in  nL R2 . 

 Proposition 2
2
. Let  nHxf R1)(  . Then the following 

logarithmic Gross-Sobolev inequality is valid:  

                                                           
1
 F.B. Weissler, Logarithmic Sobolev inequalities for the heat-diffusion semigroup, 

Trans. Amer. Math. Soc., 237(1978), 255-269 

2 L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97(1975), 1661-1683 
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 Statement 1. Inequalities (9) and (10) are equivalent: (10) 

follows from  (9) while  (9) follows from (10). 

 Statement 2. Let    nn LLxf RR 21)(   f̂ be the 

Fourier image of the function )(xf :  

 


 .)(
2

1
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2/
dxxfef ix

n




  

 Then the following Hirshman inequality is valid:  

     enfIfI lnˆ   .                            (11) 

 Inequality (11) is exact: the equality in it is attained iff 

,0,
2




aaef
xxb

.,0 nxb R  

 Statement 3. Let  ,)( 1 nHxf R  ,2
nLrf R xr  . 

 Then the following Pauli-Heizenberg-Weil inequality is valid: 

.ˆ22 2/12/12/12/1
rff

n
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n
f               (12) 

 Inequality (12) is exact; the equality in it is attained iff f is a 

Gauss function: ,
2

xxb
aef
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 Statement 4. Let    nRR 2
1 , LrfHf n  .  

Then the following entropy inequality is valid 
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 Inequality (13) is exact; the equality in it is attained in it iff  

f  is a Gauss function ,
2

xxb
aef


 nxba R ,0,0 . 

 Under the weak global solution of problem (14)–(16) we 

understand the following: the function   )];,0([ 1HTCu
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))(];,0([ 1 


HTL  satisfies (14)–(16) in the sense of distribution for 

.0T  

 The following theorem is valid 

 Theorem 4. (on global existence). 

 А) Let ),2,0(,0  g ).(1
0 



Hu  Then problem (14)–(16) 

has a weak global solution.  

 Б)  Let .2,0  g Then assume that the initial function     

)(1
0 



Hu  is such that for it the following condition is fulfilled 
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2
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where 0   is a radially-symmetric function, ,),(00 xrr   that 

is the  positive solution of the following boundary value problem: 
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Then problem  (14)–(16) has a weak global solution. 

 Remark 1. For 0g  problem (14)–(16) has a weak global 

solution ).(1
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Theorem 5. Let 2R  be a bounded or unbounded 

domain. Let )(xu  be any function from the space ).(1 
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Then the following inequality is valid:   
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 Theorem 6. The weak solution of problem (14)–(16) is 

unique. 

 In section 1.5 one interpolational Sobolev inequality is 

proved. 

 Then a new proof of the logarithmic Gross-Sobolev 

inequality is proved based on interpolational Sobolev inequality. The 

following theorem is valid  

Theorem 7. Let ),()( 1 nRHxu   where )()( 1
2

1 nn RWRH    

is a Sobolev space. Let ,  be certain numbers from section 1.1, 

)(gK be determined by formula (3). Then the following Galiardo-

Nirenberg-Sobolev multiplicative inequality is valid 

.
1

02








 uuKu
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2
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 Bg KKK where BK  is determined in the 

following way 
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The following theorem is proved by means of theorem 6 

Theorem 8. Let )()( 1 nRHxu  . Then the following 

logarithmic Gross-Sobolev inequality is valid:  
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Inequality (18) is exact: it passes to equality for 

),exp()(
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xxbaxu   

where ba,  are arbitrary positive constants, nRx is arbitrary. 
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 In section 1.6 we prove one interpolational Sobolev 

inequality. Then we offer one generalized logarithmic Sobolev 

inequality based on interpolational Sobolev inequality 

 We have 

Theorem  9. Let )(ˆ U  be a Fourier transform of the function 

)(xU  

  

nR

nxi

n
RdxxUeU .,)(

)2(

1
)(ˆ ),(

2/



 

 

Let ,,k  be certain numbers from section 1.2, 
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2/ nk
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Then the following multiplicative  Sobolev inequality is valid 
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section 1.2 by formula (6), while BK  was determined in section 1.5 

by formula (17). 

 For 2k  from theorem 9 it follows theorem 7 from section 

1.5, for  4k by the relation UU ˆ2
  from theorem 9 we 

have the following 

Theorem 10.  Let   ,0  for 4n , while for 4n
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BK  was determined by formula (17).  

Theorem 11. Let k be an arbitrary positive number. Let 
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For 2k  from theorem 11 it follows logarithmic Gross-Sobolev 

inequality, while for  4k  it follows the following. 

Theorem 12. Let    nRHxU 2 .  

Then the following logarithmic Gross-Sobolev inequality is 

valid: 
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 Chapter II was devoted to calculation of optimal constants in 

two Sobolev inequalities and their application. This chapter consists 

of four sections. 

 In sections 2.1 we get two upper bounds of the best constant 

in one interpolational Sobolev inequality and study their exactness. 

For the given   from the interval  0,0  , where 0  for 

 2/4,2,1 0  nn   we determine  2/5,0   n . For the 

best constant in the Sobolev inequality  
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where 0K is the best constant, the following estimation is valid  
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Here  gK  was determined by formula (3), BK  was determined by 

formula (17). 

 Then, one more upper bound for 0K is given 
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n xxKxG  xK n

2

2  is the 

McDonald function, 2n . 

 Theorem 13. For 2  the estimation 00 KK  , for  

20    the estimation 00 KK   is valid. 

 In section 2.2 we study interrelation between optimal 

constants in two Sobolev inequalities.  

 Theorem 14. Between optimal constant 0K  in Sobolev 

inequality (19) and optimal constant cK  in the following Sobolev 

inequality 

 nRHc uKu 12



 

there exists the following relation 

0KKc  . 

 In section 2.3 the optimal constant  0K  in inequality (19) is 

calculated. 

 Theorem 15. For the optimal constant 
0

K  in Sobolev 

inequality  (19) the following formula is valid: 
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where  r0  is the main state (positive solution from the class 
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boundary value problem: 
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Then inequality (19) is applied to the study of solvability of the 

Cauchy problem for the nonlinear Schrodinger equation  
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Here )(,, 01 xuRR    is a function given in nR . We accept the 

following denotation:  
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 Let the condition on  , indicated in section 2.1. be fulfilled. By the 

imbedding )()( 2
1 nn RLRH    the mapping )(uEu   is a 

continuous functional. Let 

 )),((supinf,0,14/,0 2/

0

xuEdn n 


 ),(1 nRHu

;u  we define the following sets 

 ,)(),()(,),(| 1 duEuAuBuRHuuM n  
   

 ,)()(,)(,),(| 1 uBuAduEuRHuuM n    

 ,)()(,)(,),(| 1 uBuAduEuRHuuM n    
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 ,]1,0[,))((,),(| 2/1   dxuEuRHuuV nn
 

 ,),1[,))((,),(| 2/1   dxuEuRHuuV nn  

where 0

/4

0
)1(2/4 ,/ 

 nn   is the main state of equation (20). 

 Statement 5.  

1) The formula )1/(11 )/1)(1(  d  is valid;  

2) We have the equalities .,,    MVMVMMM  

Put .,
00









  





VVVV   

 By c  we will denote various constants independent of t  and  

 txu ,  . 

Theorem 16. Let ,/4 0 n  where )2/(40  n  for 

3n ( 0  for )2,1n . Let  be above determined stability sets. 

Then: 

1) For  
Vu0  problem (21) has a unique global solution, 

 ,)(),,0[)( 1 nRHCtu   and for ),0[ t  the inclusion Vu  is 

valid. For the entropy dxtxutxut ),(ln),()(
2

  of nonlinear 

Schrodinger dynamics (21) the estimation ),1ln()( tcct 

),0[ t  is valid. 

2)  Let ).(, 20
nRLruVu  

Then problem (21) has no solution 

 ,)(),,0[)( 1 nRHTCtu   on the whole, i.e. for  .0T  

Theorem 17. Let .0,/4   n  

 Let )(1
0

nRHu  , )(20
nRLru   and for the initial function  

)(0 xu  the condition ,00

2/
 u

n
 be fulfilled, where  0  is the 

main state of equation (20). Then problem (21) has a unique solution 

 )(),,0[)( 1 nRHCtu   on the whole and for this solution for 

),0[ t  the following estimation is valid. 

,)1()()1( )2/(

/)42(

2/ 



  nn

nn

nn tctutc  
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).1ln()()1ln( tccttcc    

 Remark 2. For 1n  equation (20) is solved exactly, namely: 

  ,/2),/(//)1(
2/

0  
 xch  by the some token 

 where -is Eulers beta-

function. 

 In section 2.4 we obtained some sufficient conditions for no 

nontrivial generalized solutions of Dirichlet's internal problem with a 

homogeneous Schrodinger type equation. To this end, we established 

some upper bounds of the exact constant in the known Sobolev space 

in an unbounded domain, and also in the known Steklov inequality. 

Let  be an arbitrary bounded open domain with the 

boundary . 

 We consider the Dirichlet problem for the Schrodinger 

operator   

,0

,0)(





наu

вuxqu

                   (22) 

where ,  is a function given in  . We will 

consider problem (22) in the following generalized sense. 

Definition 1. The function  is a generalized 

solution of problem (22), if it satisfies the integral idently 

 

for any function )()(
0

1
2 Wx .  

 We accept the following denotation: For the given  from 

the interval , where   for 
 
for 3n , 

we determine .  

  ),,(/)1(2 122

0 
 B 

),( B

nR

10,,1  C

)(xq


 




n

i ix1
2

2

)(xq

)()(
0

1
2 Wxu

0)()()(
)()(

1


















 

 

dxxxuxq
x

x

x

xu
n

i ii






 0,0  0
2

4
,2,1 0




n
n 

2
5,0









n
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 Assume 














1

2
0




Bg KKK

, where  gK  was determined 

by formula (3), BK  was determined by formula (17). Then, 




mesKK
n

c ,)(),(
/1/1

0

 
. 

The following theorems are valid. 

Theorem 18. Let   be above determined number, 

constxq )( - be a function given in   for the class 
).(/)2(  L

 

Then let 

}.0/{)(,)(),(inf
0

1
2

2








WJJ 





  

Let  )(xq  be such that  
2

/)2(


 
q

.                                  (23) 

Then problem (22) has no nontrivial generalized solution in the class 

)(
0

1
2 W .  

Theorem 19. Let   and   be above determined numbers, 

constxq )(  be a function in   from the class 
).(/)2(  L

 Let  

)(xq  be such that for the norm  /)2( 
q

 the following condition be 

fulfilled 
2
*/)2(


 

q
;              (24) 

here 
ck

1
*  .  

Then problem (22) has no nontrivial generalized solution in 

the class  )(
0

1
2 W .  

 Remark 3.  Compared to condition (24) condition (23) is 

more exact as * . It is clear that condition (24) is more practical 
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from the point of view of calculation than condition (23). In 

theorems 18 and 19 if we substitute  /)2( 
q

 by  /)2(

*


q

, where 

))(,0max( xqq 

, we get the best estimation. It is clear that if  
0)( xq  a.e. in  , then problem (22) has no solution in the class 

)(
0

1
2 W .  

 When proving theorems 18 and 19 we use the following 

theorem. 

 Theorem 20. Let   be the above determined number, )(x   

be any function from the class )(
0

1
2 W . 

Then the following Sobolev inequality is valid: 





 CK

2
. 

 Chapter III is devoted to solvability of problem for nonlinear 

evolutional Schrodinger equations and blow-up, self canalization of 

their solutions. This chapter consists of six sections. 

 In 3.1 a mixed problem is considered for Schrodingers 

evolutional cubic equation with a cubic dissipative term.  

 Let 2R  be a bounded or unbounded domain with smooth 

boundary   . 

 We consider the following mixed problem: 

,0,,
22





txuuuuui

t

u
i             (25) 

 xxuu t ),(00 ,                                     (26) 

0,,0  tнаu .                                    (27) 

Here  
1},{ R  are the parameters of equation (25), 0u   is a 

function given in  . 

Assume );;(: 2 CLH  );(:
0

1
2

1
0 CWH  , 

 );(: 22

2
CWH  -are Sobolev’s Hilbert spaces; 1

0
2 HHB  .  
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 Let xrr  ),(0  be a positive monotonically decreasing 

function from the class ),0[2 C  with the finite norm  10 H
 , that is 

a unique solution (main state) of the following nonlinear boundary 

value problem 











 

.0)(,0)0(

,0,0)()()(
1

)(

00

3
0000 rrrr

r
r

        (28) 

 We have the following theorem on global solvability of 

problem  (25)-(27). 

 Theorem 21. Let Bu  0,,0 
 
be such that one of the 

following conditions be fulfilled   ,2,1,3
2

0  kPu k  

where  

 ,
8

27
, 2

2

01


  PP  

0 is the main state of problem  (28). For 0 0u
 
any of B . Then 

problem (25)-(27) has a global strong solutions and this solution is 

unique,   txu ,  is from the class     BC ;,00   HC ;,01  . 

 In section 3.2 we consider global solvability and 

smoothness, asymptotics as t  of the mixed problem 

];,0[),(, TGQtxuuuuuiiu
pq

t                   (29) 

];,0[,0
0

TGSu
s


                                    (30) 

 .),()0,( 0 Gxxuxu                                          (31) 

Here G  is an arbitrary bounded domain of n dimensional domain nR  

with a smooth boundary, ,, RR   
 0,, uRpq   is a function 

given in nR . 

 We have the following theorem  

Theorem 22. Let 0,0,0,0   qp  (for 0  we 

additionally assume that pq  ). Let )()( 2
1

0 GLGHu  



 
where 
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),max( qp . Then there exists a unique solution of problem (29)-

(31) such that 

),()()(;,0 22
1 QLGLGHTLu qp  














 



 

.)()(;,0

1

2
1





















 GLGHTLut



  

In section 3.3 we consider self-canalization of the solutions of 

a nonlinear evolution Schrodinger equation.  

Let for the nonlinear Schrodinger evolution equation the 

Cauchy problem be posed: 

  ,
2





RRinuufu

t

u
i n                   (32) 

.)(00

n

t
Rinxuu 


                                 (33) 

Here )(sf  is a function given on ),0[  0u is a function given in .nR  

We well accept standard denotation :  

)()(),()( 1
2

12 nnnn RWRHRLRH  are complex Hilbert 

spaces of Sobolev;    is a norm in ),(2

nRL
p

  is a norm in 

.1),( pRL n

p  
 Put 

,),())(()(
2

tutuAtA   

),()())(()( tBtAtuEtE   where  
nR

dxtxuFtB ,)),(()(
2

 

where    
S

tutuatadfsF
0

2
,),())(()(;)()(   

.,...,2,1,
2

))(()( nkdx
x

u
u

x

u
u

i
tuPtP

nR kk

kk 
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Definition  2. We say that the global solution  ),( txu  of  

problem  (32), (33)  from the class 

    ))(;,0[))(;,0[ 1110 nn RHCRHC   

is self-canalized if for ),0[ t the following bilateral estimation 

is fulfilled for it: ,),(
4

consttuconst   where const denotes 

various positive constants independent of t and ).,( txu  

The following theorems are valid. 

Theorem 23. (on global existence).  

Let ),(1
0

nRHu  ,0)0( f ));0([)( 2 Csf  on the interval 

);0[  be a positive increasing, downwards convex function, i.e. 

,0)( sf ,0)(' sf 0)('' sf ).,0[ s  

Then for 1n  problem  (32), (33) has a global solution from 

the class 

    ))(;,0[))(;,0[ 1110 nn RHCRHC  . 

For 2n the said one remains valid subject to the condition  

.
)0('16

272

0
f

u


  

Theorem 24. (on self-canalization). 

Let all the conditions of theorem 23 be fulfilled. Let the initial 

function 0u
 

be such that the following inequality be fulfilled:  

,
)(

)(
)(

0

0
2

0
ua

uP
uE  where ).()( 0

1

2
0

2 uPuP
n

k
k



  Then the solution of 

problem  (32), (33) is self-canalized. 

 In section 3.4 we consider the Cauchy problem for a cubic 

evolution Schrodinger equation:  

,22





RRinuuu

t

u
i                 (34) 

.| 2
00 Rinuu t                                      (35) 

It is proved that under some initial data the solution of problem (34), 

(35) blows-up after some finite time whose exact value is estimated 
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from above.     

 In section 3.5 we consider the Cauchy problem for a 

nonlinear evolution Schrodinger equation: 

,0,, 



tRxuuu

t

u
i n

                     (36)                                       

   xuxu 00,     in     nR                                  (37) 

Here  xun 0,3,0  is a function given in nR . 

 It is proved that for n/4  and some initial data the 

solutions of problems (36), (37) blow-up after finite time whose 

value is estimated from above. Furthermore, the lower bounds of 

blow-up rate of solutions were obtained in some norms.  

 In section  3.6  we consider a global existence, asymptotics as 

t  and blow-up of the solution of the problem 

 
);(),0(

,

0

2

xuxu

RRinuukfuiu n
t



 
                          

here 0
1, uRk   is a function given in nR . 

 Chapter IV was devoted to no global solutions of the first 

mixed problem for a nonlinear Ginsburg-Landau-Schrodinger type 

evolution equation, solvability and blow-up solutions of the Cauchy 

problem for a system of nonlinear Schrodinger evolution equations. 

This chapter consists of 5 sections.  

 Section 4.1 studied no global solutions of a mixed problem 

for a nonlinear Schrodinger type evolution equation. Let   nR

be an arbitrary bounded domain with a smooth boundary. Consider 

that following mixed problem: 

  ,0,,,  txuufuiut        (38) 

      ,0,0,,,0, 0 


ttxuxxuxu      (39) 

in which 

  





1

2

1

1, uuuuf  ,                   (40) 

where   .0,0,0,0,0,0 2
2

2
121  
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It was proved that for "rather large" values of initial data 

problem (38)-(40) has no global solutions.   

In section 4.2 blow-up of solutions of the first mixed problem 

for a class of nonlinear Ginsburg-Landau-Schrodinger evolution 

equation is studied.. 

 Let 
nR  be a bounded domain with smooth boundary 

.  Consider the following mixed problem: 

,0,

,)()()(





tx

uiufuiut 
                         (41) 

,),()0,( 0  xxuxu                                    (42) 

.0,0),( 


ttxu                                       (43) 

Here ,,},,,,,{,)()(
1




 RpRuiuf

p


,022    .022 
 

It was proved that the solutions of problem (41)-(43) under 

"large values" of initial data blow-up after finite time estimated from 

above.  

 In section 4.3 no global solutions of the first mixed problen is 

studied for a nonlinear Ginsburg-Landau type evolution equation. 

 Let  nR be an arbitrary bounded domain with a smooth 

boundary. Consider the following mixed problem: 

 

    ,0,,,  txuufuiut 

      ,0,0/,,,0, 0   ttxuxxuxu  

here                                 

  





1

2

1

1, uuuuf  , 

where .,0,0,0,0,0,0 2
2

2
121 R   

It was proved that for "rather large initial data" the problem 

under consideration has no global solutions. 

 In section 4.4 we consider a mixed problem for a nonlinear 

Schrodinger evolution equation in two-dimensional domain. Let  
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2R  be a bounded domain with a rather smooth boundary Г. 

Consider the following mixed problem: 

,0,, 



txuuu

t

u
i


      (44) 

  ,0,,0,  txtxu    (45) 

     xxuxu ,0, 0 .   (46) 

Here  xu0,0  is a function given on  . For problem (44)-(46) 

we study smoothness of solutions and their blow-up in the starry 

domain  . 

Problem (44)-(46) has a global solution in the space of 

functions  

            













 2

12
2

0 1
2 ;,0;,0, LCWWCtxu   

for 2  for any  

      2
2

0 1
20 WWxu  . 

In the case of 2 what has been said remains valid for

.
8

272

0


u  

 Then, for 2  a set of initial data 0u  is selected from the 

space     2
2

0 1
2 WW   whose solution of the problem under 

consideration blows up for finite time ,maxt estimated from above. 

More exactly, let the initial function  xu0  be such that  

0
2

2 2

20

2

00 










uuE , then the solution of the problem 

(44)-(46)  

             2max
12

2
1
2max ;,0;,0, LtCWWttxu   

blows up after finite time ,maxt  estimated from above by a certain 

number dependent on  xu0  for a star domain.  
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 The domain   is called a star domain if the ray outgoing 

from any internal point of the domain   intersects its boundary   

at one point. 

In section 4.5 we consider global existence, behavior as 

t  and blow-up of the solution of the Cauchy problem for a 

system of nonlinear Schrodinger evolution equations  

,32111
1 uuu
t

u
i  



 

,31222
2 uuu
t

u
i  



in ,RRn

          (47) 

,21333
3 uuu
t

u
i  



 

.3,2,1,),(),0( 0  mxxutu n
mm R   (48) 

 

 Here )),(),,(),,((),( 321 txutxutxutxu   is a known complex 

valued vector function;  3,2,1),(0 mxu m  are the functions given in 
nR ; 3,2,1,, mmm   are the given nonzero real constants 

(parameters of equation (47)), i.e.   ;3,2,1,0\, 1  mmm R  the 

dash over ),( txum  means complex conjugation of ),( txum . 

 Further we will suppose that the parameters  

,3,2,1,, mmm   of equation (47) satisfy the conditions  

,321                                       (49) 

,
3

3

2

2

1

1












                                 (50) 

where ,
m

m
m




  i.e.   .3,2,1,  mconstsign mm  

 The following theorem is valid  

 Theorem 25. (on global solvability). Let the parameters of 

equation (47) satisfy conditions (49), (50) and 4n . 

 Let .3,2,1,1
0  mHu m  
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 Then problem  (47), (48) has a unique global solution such 

that 

     1110 ;,0;,0),(  HCHCtxum , .3,2,1m
 

Chapter V was devoted to solvability and blow-up of the 

solution of the Cauchy problem for a nonlinear Schrodinger-Hartry 

evolution equation. This chapter consists of three sections.  

In section 5.1 one interpolation inequality containing a 

convolution was proved. The following theorem is valid. 

 Theorem 26. Let ),()(),,4min(0 1 nRHxVn    then 

the following interpolation inequality is valid:  

 

;)(
1

0
4

 
 VVKVQ                         (51) 

here 

;
4

,
)()(

)(

22








   dxdy
yx

yVxV
VQ

n nR r
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)1(
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nn
BB is a beta-function, )( -is Euler gamma-

function  ;)1( 1 
    

.
2

4
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2

4
,

2

'
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n

n
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n

n
p
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ppK

n
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B  

We study calculation of the exact constant in inequality (51). 
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Let ,
4

),,4min(0


  n
 

).()( 1 nRHxV   Consider the 

functional 

4

1

0
)(

)(
VQ

VV
VR

 


                              (52) 

and its minimization along the space .0),(1 VRH n  Since the 

mapping ,)(0 RVR   is continuous and the functional )(0 VR  is 

lower bounded by inequality (51), consequently there exists 

infimum. Assume 

},0,|)(inf{
1 1

0

0

 VHVVR
K

                 (53) 

Let rW  be a subspace of )(1 nRH , consisting of the functions 

),()( 1 nRHxV   dependent only on ,r  positive and decreasing 

monotonically tend to zero .r  The following theorem is valid. 

Theorem 27. Let 

,
4

),,4min(0


  n ).()( 1 nRHxV   

Then let  )(0 VR  be determined by relation (52), 0K  by 

relation (53). Then: 

1) The functional )(0 VR  achieves its infimum on the  function 

],,0[)( 2

0  CWr r  that is the positive solution of the following 

nonlinear boundary value problem: 

;0)(,0)0(

,
)(1

0

'

0

2

0

00

'

0

''

0







 









x

d

r

n

                     (54) 

2) For the solution ),0[)( 2

0  CWr r  of problem (54) the 

following relation is valid 
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,
1

)(
2

2

2
2

2

0

0

2

0















n

nL

B

GK
C

Q  

where 

,
2

4
,

2

4

2

2
,

2

2 2






















 n

n

n

n
K

n

n

n

n
KC BBB  

,2,
)(

)(
2/)2(

2/)2(





n

r

rK
rG

n

n
 

2/)2( nK -is McDonald's function, )(rG -is a kernel of the integral 

operator ,)( 1I for which for 2n  there exist various integral 

representations, including the above used. As is known, for  3,1n  

)(rG is expressed by the elementary functions; 

3) The optimal constant 0K  is determined by the formula  

;
1

4

1

2

0

1

0













 
 




K  

4) The equality in interpolational inequality (51) holds iff 

 

  .},0{,0, 1

0

nRRxV    

 In section 5.2 we consider a Cauchy problem for a nonlinear 

Schrodinger-Hartry evolution equation: 

,)(  RRвuufuiu n

t                            (55) 

,)(00

n

t
Rвxuu 

                                  (56) 

here 

,),()(
2
dytyuyxuf 






                        (57) 

where ,  are real positive numbers (parameters of equation (55)),  

0u   is a  functions given in nR . 
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 Denotation. )(:),(: 1
2

1
2

nn RWHRLH  is Sobolev's Hilbert 

space 
*11 )(HH 
is a conjugated space of  


HH ;1

 
;|{ H

,Hr   where  };; Hxr  is a norm in 
p

H ,  is a norm 

in  ;1),( pRL n
p  is a norm in 

1H ,    00 ,,0 
 
for  

,2,1n 3,
2

4
0 


 n

n
  ,2/5,0   n ;4/  2/  , 

 n,4min0  ;      


 dxdytyutxuyxtQ
22

,,
2

1 
. 

 Under repulsive interaction, i.e. for 0 the following 

theorem is proved. 

Theorem  28. (on global solvability and damping). 

 Let ,0 ,0 0  .0 
Hu Then problem (55)-(57) 

has a unique global solution  


 HC );,0[0
 and for ),0[ t  the 

following estimations are valid: 

1) for ;)1()()1(:    tctQtcn  

2) for ,)1()()1(:2,3
20





 



  tctutcn  

;,,)1(),( ),max(  


mesRtctu n

 

3) for         ,1,1:,2min0
2













 tctutcn

     
,,1,

,max nRtctu 



.mes  

4) ;)1(),(,)1()(
)(2








   tctutctQ
RxLR  

5) ;),(lim,),(lim
)()( 22 ctuctu

ctxctL
t

ctxL
t









 

6)     ;),(lim,),(lim
)()( 22 ctutctut

ctxctL
t

ctxL
t








 

  

7)     ;)(lim,)(lim
211 , ctQtctQt RR

t
R

t




  

Here and in the sequel, by c we will denote various positive constants 

independent of ),,(, txut  but dependent only in ;,,,0 nu   in 
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definition of )(),(),(
2,11

tQtQtQ RRRR  integration with respect to  x  

and y  in the integral dxdytyutxuyx
22

),(),(





 is conducted in 

domains: 

   RR
n

R RyRxRyx 
1

,,,, c ,1 ctRR   

  .,,,,, 212121
21

ctRctRRyRRxRRyx n

RR 
 

 Consider the case ,0 i.e. the attractive interaction. The 

following theorem is valid.  

Theorem 29. (on global solvability).  

Let ,0   1
0,,2min0 Hun   . Then problem (55)-(57) 

has a unique global solution   txu ,   in the class of function 

 10 );,0[ HC  . 

In section 5.3 we study the Cauchy problem for a nonlinear 

Schrodinger Hartry evolution equation in the critical case 

,)(  RRinuufuiu n
t                         (58) 

,)(00

n

t
Rinxuu 


                                 (59) 

here  

  ,),(
2
dytyuyxuf 





                              (60) 

where  },0{\1R is a real positive number 0u is a function given 

in nR . 

 Problem (58)-(60) is studied in critical value of the parameter 

2   in the case 3,0  n . 

 Denotation. )(: 1
2

1 nRWH  is Sobolev's Hilbert space, 

*11 )(HH 
 is a space conjugated to ;1H


H );(|{ 2

nRLvv 

),(2

nRLrv  where )};(; 2

nRLvxr     is a norm in 

p

nRL ),(2  is a norm in  ;1),( pRL n
p  is a norm in .1H  

Definition 3. We will call the stationary solutions of equation 

(58) for 0  with a nonlinear term (60) the solution of the form 
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)(),( xetxu ikt , where )(, xRk   (a real function) is the solution 

from the class 1H of the following problem: 

 


,,)(
2 nRxdyyyxk 


 

.0)(  xforx                                    (61) 

 Definition 4. We will denote positive radially-symmetric   

)2( n  solution of problem (61) )(r  from the class )),0([2 C  with 

finite norm )(r  by )(0 r and call the main state.  

 For the state 0  of equation (61) for 3,2,1,1  nk   

the following relation is valid: 

 


 .
)()(

2

1 2

02

2

0

2

02

0 dxdxdy
yx

yx
dx 


  

Determine for  )()( 1 nRHxv   the functional 

dxdy
yx

yvxv
dxvvR 




2

22

2 )()(

2

1
)(  

and the set 

 .0)(},0/{)(| 1  vRRHvvM n
 

The following lemma is valid 

Lemma 3. Let )(0 x  be the main state of equation (61) for 

.3,2,1,1  nk   Then , 

)(min)( 0 vSS
Mv

 ,   where     .)(
2
dxxvvS

 

In the critical case the following theorems were proved. 

Without loss of generality in the sequel we will assume
  .1  

Theorem 30. Let 

,1,3,2   n ,3,2  n },0{\)(1
0

nRHu  )(20
nRLru   

and satisfy the condition .0)( 0 uE  
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Then the solution )(tu  of problem (58)-(60) blow-up after 

finite time maxt  upper bounded by a certain number dependent on the 

initial function 0u . 

Theorem 31. Let ,1,3,2   n )(1
0

nRHu   

satisfy the condition 

 


 ).(
)()(

2

1
)( 02

2

0

2

02

0

2

00 Sdxdy
yx

yuxu
dxudxuuJ  

Then : 

а) if 0u  satisfies the condition 0)( 0 uR  and ),(2
0

nRLru   

then the solution )(tu  of problem (58)-(60) blows-up after finite time  

maxt  , upper bounded by some number dependent on 0u ; 

b) if  

,0)( 0 uR  

then the solution of problem (58)-(60) globally exists: 

)).();,0([))();,0([),( 111 nn RHCRHCtxu   

Theorem 32. Let ,1,3,2   n )(1
0

nRHu    

satisfy the conditions  

 


 .0
)()(

2

1
2

2

0

2

02

00 dxdy
yx

yuxu
dxuE  

).()( 00 SuJ   

Then the solution )(tu  of problem (58)-(60) globally exists, 
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CONCLUSIONS 

 

The dissertation work is devoted to studying global 

solvability and blow up of solutions of the Cauchy problem and also 

a mixed problem for some Schrodinger Ginsburg-Landau and 

Schrodinger Hartry nonlinear evolution equations. To this end, some 

exact integral inequalities are proved, the best constant is calculated 

and its estimation in one interpolational Sobolev inequality is given. 

In the work the following results are obtained:  

1. New exact integral inequalities applied to the proof of the 

entropy inequality, are proved. The entropy inequality is generalized. 

The Trudinger type inequality that is applicable to Schrodinger 

nonlinear evolution equation is proved for unbounded domains. 

Exact constants in some inequalities of mathematical physics are 

calculated.  

2. The exact constants are calculated and their estimates are 

given in some Sobolev inequalities that are aplicable to the proof of 

solvability of Schrodinger equations. 

3. Sufficient conditions for solvability, blow-up and self-

canalization of the solution of the Cauchy problem, and also a mixed 

problem for some nonlinear Schrodinger evolution equations are 

obtained.   

4. Sufficient conditions of no global solutions are obtained a 

mixed problem for Schrodinger and also Ginsburg-Landau type 

nonlinear evolution equation.  

5. The global solvability and blow-up solutions of the Cauchy 

problem is studied for a system of Schrodinger evolution equations 

with quadratic nonlinearity. 
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6. Global solvability and blow-up, damping of the solutions of 

the Cauchy problem is studied for Schrodinger-Hartry evolution 

equation in critical and supercritical cases. 
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